Quiz \#1: Kernel Methods for Machine Learning

Problem 1

Given data $\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right) \in \mathbb{R}^{p} \times \mathbb{R}$, ridge regression solves: for some $\lambda \geq 0$,

$$
\min _{\boldsymbol{\beta} \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\boldsymbol{\beta}^{\top} \mathbf{x}_{i}\right)^{2}+\lambda\|\boldsymbol{\beta}\|^{2} .
$$

(1) Why is λ important?
(2) What happens if λ is too small or too large?
(3) In practice, how would you choose the value of λ ?

Solutions:

(1) The regularization parameter λ controls the amount of shrinkage: the larger the value of λ, the greater the amount of shrinkage on the coefficients toward zero. When there exist many correlated variables in a linear regression model (which typically happen when $n<p$), their coefficients can become poorly determined and exhibit high variance without any regularization. Usually this may lead to poor generalization on test data, a phenomenon typically known as over-fitting. By imposing a size constraint such as ridge on the coefficients during training, this problem can be alleviated.
(2) If λ is too small (and returns least-squares estimator when $\lambda=0$ at an extreme), estimated coefficients can exhibit high variance due to overfitting, leading to poor generalization on test data. If $\bar{\lambda}$ is too large (and returns a zero estimator when $\lambda=+\infty$ at the other extreme), estimated coefficients can exhibit high bias, also leading to poor generalization on test data.
(3) Choosing λ during training is typically known as parameter tuning or model selection, as an attempt to improve generalization on unseen data by trading off bias and variance of the estimated coefficients. A practical approach is cross-validation: for a predetermined list of λ 's, pick the one that gives best cross-validated prediction error.

Problem 2

Given data $\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right) \in \mathbb{R}^{p} \times \mathbb{R}$, the ridge regression with an intercept solves: for some $\lambda \geq 0$,

$$
\min _{\beta_{0} \in \mathbb{R}, \boldsymbol{\beta} \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\boldsymbol{\beta}^{\top} \mathbf{x}_{i}\right)^{2}+\lambda\|\boldsymbol{\beta}\|^{2}
$$

(1) Find the optimal solutions $\left(\hat{\beta_{0}}, \hat{\boldsymbol{\beta}}\right) \in \mathbb{R}^{p+1}$ that solve this problem.
(2) How could you solve this problem, suppose you already have a solver for ridge regression without intercept?

Solutions:

(1) Let us denote by $\ell\left(\beta_{0}, \boldsymbol{\beta}\right)$ the objective function. By taking partial derivatives over the variables and setting them to zero, we have:

$$
\begin{align*}
\frac{\partial \ell}{\partial \beta_{0}}=-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\boldsymbol{\beta}^{\top} \mathbf{x}_{i}\right) & =0 \tag{1}\\
\frac{\partial \ell}{\partial \boldsymbol{\beta}}=-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\boldsymbol{\beta}^{\top} \mathbf{x}_{i}\right) \mathbf{x}_{i}+2 \lambda \boldsymbol{\beta} & =0 \tag{2}
\end{align*}
$$

Denote in matrix form by $\mathbf{X}:=\left(\mathbf{x}_{1}|\ldots| \mathbf{x}_{n}\right)^{\top} \in \mathbb{R}^{n \times p}$ the design matrix, $\mathbf{y}:=$ $\left(y_{1}, \ldots, y_{n}\right)^{\top} \in \mathbb{R}^{n}$ the response vector, $\mathbf{1}:=(1, \ldots, 1)^{\top} \in \mathbb{R}^{n}$ the vector of 1 's of length n. (1) and (2) are equivalent to:

$$
\begin{align*}
\beta_{0} & =\frac{1}{n}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\top} \mathbf{1} \tag{3}\\
\mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta}+\lambda n \boldsymbol{\beta} & =\mathbf{X}^{\top} \mathbf{y}-\beta_{0} \mathbf{X}^{\top} \mathbf{1} \tag{4}
\end{align*}
$$

Plug (3) into (4) and we get:

$$
\mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta}+\lambda n \boldsymbol{\beta}=\mathbf{X}^{\top} \mathbf{y}-\mathbf{X}^{\top}\left(\frac{1}{n} \mathbf{1 1}{ }^{\top}\right)(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})
$$

Denote by \mathbf{I} the n-dimensional identity matrix, and $\mathbf{J}:=\mathbf{I}-\frac{1}{n} \mathbf{1 1}{ }^{\top} \in \mathbb{R}^{n \times n}$, we have:

$$
\left(\mathbf{X}^{\top} \mathbf{J} \mathbf{X}+\lambda n \mathbf{I}\right) \boldsymbol{\beta}=\mathbf{X}^{\top} \mathbf{J} \mathbf{y}
$$

which gives the solution to

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{J} \mathbf{X}+\lambda n \mathbf{I}\right)^{-1} \mathbf{X}^{\top} \mathbf{J} \mathbf{y} \tag{5}
\end{equation*}
$$

Plugging $\hat{\boldsymbol{\beta}}$ into (3), we get:

$$
\begin{equation*}
\hat{\beta_{0}}=\frac{1}{n}(\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}})^{\top} \mathbf{1} . \tag{6}
\end{equation*}
$$

Optional: Suppose you would like to find $\hat{\beta}_{0}$ directly. Starting with (4), we have:

$$
\boldsymbol{\beta}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda n \mathbf{I}\right)^{-1} \mathbf{X}^{\top}\left(\mathbf{y}-\beta_{0} \mathbf{1}\right)
$$

Plug it into (3) and some mathematical deductions give the solution to:

$$
\begin{align*}
\hat{\beta}_{0} & =\frac{\mathbf{1}^{\top}\left(\mathbf{I}-\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda n \mathbf{I}\right)^{-1} \mathbf{X}^{\top}\right) \mathbf{y}}{\mathbf{1}^{\top}\left(\mathbf{I}-\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda n \mathbf{I}\right)^{-1} \mathbf{X}^{\top}\right) \mathbf{1}} \tag{7}\\
& =\frac{\mathbf{1}^{\top}\left(\mathbf{X} \mathbf{X}^{\top}+\lambda n \mathbf{I}\right)^{-1} \mathbf{y}}{\mathbf{1}^{\top}\left(\mathbf{X} \mathbf{X}^{\top}+\lambda n \mathbf{I}\right)^{-1} \mathbf{1}} .
\end{align*}
$$

Note that we have also used equality $\mathbf{1}^{\top} \mathbf{1}=n$ in the deduction, and the second equality is due to the matrix inversion lemma.
(2) It is easy to verify that $\mathbf{J}^{\top}=\mathbf{J}$ and $\mathbf{J}^{2}=\mathbf{J}$. Therefore, if we further define centered data:

$$
\tilde{\mathbf{X}}:=\mathbf{J X}, \quad \tilde{\mathbf{y}}:=\mathbf{J} \mathbf{y},
$$

we have that the estimated coefficients (5) can be written as:

$$
\hat{\boldsymbol{\beta}}=\left(\tilde{\mathbf{X}}^{\top} \tilde{\mathbf{X}}+\lambda n \mathbf{I}\right)^{-1} \tilde{\mathbf{X}}^{\top} \tilde{\mathbf{y}} .
$$

This identifies the form of the estimated coefficients given by ridge regression without an intercept.

In words, the estimated coefficients of data (\mathbf{X}, \mathbf{y}) using ridge regression with an intercept is the same as the estimated coefficients of centered data ($\tilde{\mathbf{X}}, \tilde{\mathbf{y}}$) using ridge regression without an intercept.
Optional: Alternatively, we could estimate the intercept $\hat{\beta}_{0}$ by (7). Define $z_{i}=$ $y_{i}-\hat{\beta_{0}}$, thus we get an equivalent ridge problem without intercept:

$$
\min _{\boldsymbol{\beta} \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n}\left(z_{i}-\boldsymbol{\beta}^{\top} \mathbf{x}_{i}\right)^{2}+\lambda\|\boldsymbol{\beta}\|^{2} .
$$

Problem 2*

(1) The Gaussian density in \mathbb{R} with mean $\mu \in \mathbb{R}$ and variance $\sigma^{2} \in \mathbb{R}_{+}$is:

$$
p_{\mu, \sigma^{2}}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} .
$$

Given a set of data points $x_{1}, \ldots, x_{n} \in \mathbb{R}$, compute the log-likelihood

$$
\ell\left(\mu, \sigma^{2}\right)=\sum_{i=1}^{n} \log p_{\mu, \sigma^{2}}\left(x_{i}\right)
$$

and find the maximum likelihood estimates of the parameters by solving:

$$
\left(\hat{\mu}, \widehat{\sigma^{2}}\right):=\underset{\mu \in \mathbb{R}, \sigma^{2} \in \mathbb{R}_{+}}{\arg \max } \ell\left(\mu, \sigma^{2}\right) .
$$

(2) The Gaussian density in \mathbb{R}^{p} with mean $\boldsymbol{\mu} \in \mathbb{R}^{p}$ and a symmetric positive-definite matrix $\Omega \in \mathbb{R}_{+}^{p \times p}$, known as the precision matrix, is:

$$
p_{\boldsymbol{\mu}, \boldsymbol{\Omega}}(\mathbf{x})=\sqrt{\frac{\operatorname{det}(\boldsymbol{\Omega})}{(2 \pi)^{p}}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Omega}(\mathbf{x}-\boldsymbol{\mu})\right\}
$$

Given a set of data points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{p}$, compute the log-likelihood

$$
\ell(\boldsymbol{\mu}, \boldsymbol{\Omega})=\sum_{i=1}^{n} \log p_{\boldsymbol{\mu}, \boldsymbol{\Omega}}\left(\mathbf{x}_{i}\right)
$$

and find the maximum likelihood estimates of the parameters by solving:

$$
\begin{equation*}
(\hat{\boldsymbol{\mu}}, \hat{\boldsymbol{\Omega}}):=\underset{\boldsymbol{\mu} \in \mathbb{R}^{p}, \boldsymbol{\Omega} \in \mathbb{R}_{+}^{p p p}}{\arg \max } \ell(\boldsymbol{\mu}, \boldsymbol{\Omega}) . \tag{8}
\end{equation*}
$$

(Hint: for any vector $\mathbf{u} \in \mathbb{R}^{p}$ and any matrix $\mathbf{C} \in \mathbb{R}^{p \times p}$, you may try to find a matrix $\mathbf{V} \in \mathbb{R}^{p \times p}$ such that $\mathbf{u}^{\top} \mathbf{C u}=\operatorname{tr}(\mathbf{C V})$.)
(3) Have you noticed a problem when solving (8) if $n<p$? How could you fix it?

Solutions:

(1) By definition,

$$
\ell\left(\mu, \sigma^{2}\right)=\sum_{i=1}^{n} \log p_{\mu, \sigma^{2}}\left(x_{i}\right)=-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} .
$$

In order to find the maximum likelihood estimates (MLE), let us take the partial derivatives over both parameters and setting them to zero:

$$
\begin{align*}
\frac{\partial \ell}{\partial \mu}=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right) & =0 \tag{9}\\
\frac{\partial \ell}{\partial\left(\sigma^{2}\right)}=-\frac{n}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} & =0 \tag{10}
\end{align*}
$$

From (9), we have the MLE:

$$
\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} x_{i} .
$$

Plugging $\hat{\mu}$ into (10), we have the MLE:

$$
\widehat{\sigma^{2}}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)^{2} .
$$

(2) By definition,

$$
\begin{aligned}
\ell(\boldsymbol{\mu}, \boldsymbol{\Omega}) & =\sum_{i=1}^{n} \log p_{\boldsymbol{\mu}, \boldsymbol{\Omega}}\left(\mathbf{x}_{i}\right) \\
& =-\frac{n p}{2} \log (2 \pi)+\frac{n}{2} \log \operatorname{det}(\boldsymbol{\Omega})-\frac{1}{2} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)^{\top} \boldsymbol{\Omega}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right) .
\end{aligned}
$$

Let us first take the derivative over $\boldsymbol{\mu}$ and set it to zero:

$$
\frac{\partial \ell}{\partial \boldsymbol{\mu}}=\sum_{i=1}^{n} \boldsymbol{\Omega}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)=0 .
$$

Since $\Omega \in \mathbb{R}_{+}^{p \times p}$ is always invertible, we get the MLE:

$$
\hat{\boldsymbol{\mu}}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} .
$$

Plugging this into the data \log-likelihood ℓ, and denote the sample covariance matrix by

$$
\begin{equation*}
\mathbf{S}:=\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\hat{\boldsymbol{\mu}}\right)\left(\mathbf{x}_{i}-\hat{\boldsymbol{\mu}}\right)^{\top}, \tag{11}
\end{equation*}
$$

we get

$$
\begin{aligned}
\ell(\hat{\boldsymbol{\mu}}, \boldsymbol{\Omega}) & =-\frac{n p}{2} \log (2 \pi)+\frac{n}{2} \log \operatorname{det}(\boldsymbol{\Omega})-\frac{1}{2} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\hat{\boldsymbol{\mu}}\right)^{\top} \boldsymbol{\Omega}\left(\mathbf{x}_{i}-\hat{\boldsymbol{\mu}}\right) \\
& =-\frac{n p}{2} \log (2 \pi)+\frac{n}{2} \log \operatorname{det}(\boldsymbol{\Omega})-\frac{1}{2} \sum_{i=1}^{n} \operatorname{tr}\left(\left(\mathbf{x}_{i}-\hat{\boldsymbol{\mu}}\right)^{\top} \boldsymbol{\Omega}\left(\mathbf{x}_{i}-\hat{\boldsymbol{\mu}}\right)\right) \\
& =-\frac{n p}{2} \log (2 \pi)+\frac{n}{2} \log \operatorname{det}(\boldsymbol{\Omega})-\frac{1}{2} \sum_{i=1}^{n} \operatorname{tr}\left(\boldsymbol{\Omega}\left(\mathbf{x}_{i}-\hat{\boldsymbol{\mu}}\right)\left(\mathbf{x}_{i}-\hat{\boldsymbol{\mu}}\right)^{\top}\right) \\
& =-\frac{n p}{2} \log (2 \pi)+\frac{n}{2} \log \operatorname{det}(\boldsymbol{\Omega})-\frac{n}{2} \operatorname{tr}(\boldsymbol{\Omega} \mathbf{S}),
\end{aligned}
$$

where the first equality is due to $a=\operatorname{tr}(a)$ for any scalar a. Taking the derivative over $\boldsymbol{\Omega}$ and setting it to zero, we get:

$$
\begin{equation*}
\left.\frac{\partial \ell}{\partial \boldsymbol{\Omega}}\right|_{\boldsymbol{\mu}=\hat{\boldsymbol{\mu}}}=\frac{n}{2} \boldsymbol{\Omega}^{-1}-\frac{n}{2} \mathbf{S}=0 . \tag{12}
\end{equation*}
$$

In order to find a solution to this equation, \mathbf{S} needs to be invertible, and thus we have MLE:

$$
\hat{\boldsymbol{\Omega}}=\mathbf{S}^{-1}
$$

where \mathbf{S} is defined in (11).
(3) If $n<p$, the sample covariance matrix $\underline{\mathbf{S}}$ is not invertible. In order to fix this problem, we could resort to regularize the maximum likelihood problem. For example, we could add a trace-norm regularization to $\boldsymbol{\Omega}$ when solving (8): for some $\lambda>0$,

$$
\max _{\boldsymbol{\mu} \in \mathbb{R}^{p}, \boldsymbol{\Omega} \in \mathbb{R}_{+}^{p \times p}} \tilde{\ell}(\boldsymbol{\mu}, \boldsymbol{\Omega}):=\ell(\boldsymbol{\mu}, \boldsymbol{\Omega})-\lambda \operatorname{tr}(\boldsymbol{\Omega}) .
$$

Following similar deduction, (12) now becomes

$$
\left.\frac{\partial \tilde{\ell}}{\partial \boldsymbol{\Omega}}\right|_{\boldsymbol{\mu}=\hat{\boldsymbol{\mu}}}=\frac{n}{2} \boldsymbol{\Omega}^{-1}-\frac{n}{2} \mathbf{S}-\lambda \mathbf{I}=0
$$

which always has a solution:

$$
\hat{\boldsymbol{\Omega}}=\left(\mathbf{S}+\frac{2 \lambda}{n} \mathbf{I}\right)^{-1}
$$

Problem 3

Definition. Given a convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the Fenchel dual of f is the function $f^{*}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by

$$
f^{*}(\mathbf{z})=\max _{\mathbf{x} \in \mathbb{R}^{n}}\left[\mathbf{z}^{\top} \mathbf{x}-f(\mathbf{x})\right]
$$

Given a $n \times p$ matrix \mathbf{X}, a convex function $R: \mathbb{R}^{n} \rightarrow \mathbb{R}, \lambda \geq 0$, let us consider an L_{2}-regularized optimization problem of the form:

$$
\begin{equation*}
\min _{\mathbf{w} \in \mathbb{R}^{p}} R(\mathbf{X} \mathbf{w})+\lambda\|\mathbf{w}\|^{2} \tag{13}
\end{equation*}
$$

Our goal is to derive a dual problem of (13). To this end, let us rewrite (13) equivalently as:

$$
\begin{array}{cl}
\min _{\mathbf{w} \in \mathbb{R}^{p}, \mathbf{u} \in \mathbb{R}^{n}} & R(\mathbf{u})+\lambda\|\mathbf{w}\|^{2} \tag{14}\\
\text { s.t. } & \mathbf{X} \mathbf{w}=\mathbf{u} .
\end{array}
$$

(1) Show that the Lagrangian of (14) is:

$$
\mathcal{L}(\mathbf{w}, \mathbf{u}, \boldsymbol{\alpha})=R(\mathbf{u})+\lambda\|\mathbf{w}\|^{2}+\boldsymbol{\alpha}^{\top}(\mathbf{X} \mathbf{w}-\mathbf{u}),
$$

where $\boldsymbol{\alpha} \in \mathbb{R}^{n}$ is a vector of Lagrange multipliers.
(2) Find an expression of the Lagrange dual function $q(\boldsymbol{\alpha})=\min _{\mathbf{w}, \mathbf{u}} \mathcal{L}(\mathbf{w}, \mathbf{u}, \boldsymbol{\alpha})$ using the Fenchel dual R^{*}.
(3) If $R(\mathbf{u})=\sum_{i=1}^{n} \ell_{i}\left(u_{i}\right)$, show that $R^{*}(\boldsymbol{\alpha})=\sum_{i=1}^{n} \ell_{i}^{*}\left(\alpha_{i}\right)$.
(4) Application to ridge regression and ridge logistic regression. Derive a dual problem for the ridge regression: given $\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right) \in \mathbb{R}^{p} \times \mathbb{R}$,

$$
\min _{\boldsymbol{\beta} \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\boldsymbol{\beta}^{\top} \mathbf{x}_{i}\right)^{2}+\lambda\|\boldsymbol{\beta}\|^{2},
$$

and for ridge logistic regression: given $\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right) \in \mathbb{R}^{p} \times\{-1,+1\}$,

$$
\min _{\boldsymbol{\beta} \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} \log \left(1+e^{-y_{i} \boldsymbol{\beta}^{\top} \mathbf{x}_{i}}\right)+\lambda\|\boldsymbol{\beta}\|^{2} .
$$

Solutions:

(1) There are n equality constraints in the optimization problem (14), and each of them has a Lagrange multiplier in the Lagrangian, denoted by $\alpha_{i}, i=1, \ldots, n$. Collecting them into a vector $\boldsymbol{\alpha} \in \mathbb{R}^{n}$, the Lagrangian of (14) is indeed \mathcal{L} by definition.
(2) By definition, we have

$$
\begin{align*}
q(\boldsymbol{\alpha}) & =\min _{\mathbf{u}}\left[R(\mathbf{u})-\boldsymbol{\alpha}^{\top} \mathbf{u}\right]+\min _{\mathbf{w}}\left[\lambda\|\mathbf{w}\|^{2}+\boldsymbol{\alpha}^{\top} \mathbf{X} \mathbf{w}\right] \\
& =-R^{*}(\boldsymbol{\alpha})-\frac{1}{4 \lambda} \boldsymbol{\alpha}^{\top} \mathbf{X} \mathbf{X}^{\top} \boldsymbol{\alpha} \tag{15}
\end{align*}
$$

Note that, for the first minimization over \mathbf{u} we have used the property that $\min g=-\max [-g]$ and the definition of the Fenchel dual of R, and the minimum of the second minimization over \mathbf{w} is attained at $\hat{\mathbf{w}}=-\frac{1}{2 \lambda} \mathbf{X}^{\top} \boldsymbol{\alpha}$.
(3) By definition of the Fenchel dual and the special form of $R(\mathbf{u})=\sum_{i=1}^{n} \ell_{i}\left(u_{i}\right)$, we have

$$
\begin{align*}
R^{*}(\boldsymbol{\alpha}) & =\max _{\mathbf{u} \in \mathbb{R}^{n}}\left[\boldsymbol{\alpha}^{\top} \mathbf{u}-R(\mathbf{u})\right] \\
& =\max _{\mathbf{x} \in \mathbb{R}^{n}} \sum_{i=1}^{n}\left[\alpha_{i} u_{i}-\ell_{i}\left(u_{i}\right)\right] \\
& =\sum_{i=1}^{n} \max _{u_{i} \in \mathbb{R}}\left[\alpha_{i} u_{i}-\ell_{i}\left(u_{i}\right)\right] \tag{16}\\
& =\sum_{i=1}^{n} \ell_{i}^{*}\left(\alpha_{i}\right) .
\end{align*}
$$

(4) Application to ridge regression. Now $R(\mathbf{u})=\sum_{i=1}^{n} \frac{1}{n}\left(y_{i}-u_{i}\right)^{2}$. Let us first derive the Fenchel dual of $\ell_{i}\left(u_{i}\right)=\frac{1}{n}\left(u_{i}-y_{i}\right)^{2}$. By definition we have

$$
\ell_{i}^{*}\left(\alpha_{i}\right)=\max _{u_{i} \in \mathbb{R}}\left[\alpha_{i} u_{i}-\frac{1}{n}\left(u_{i}-y_{i}\right)^{2}\right]=\frac{n}{4} \alpha_{i}^{2}+\alpha_{i} y_{i}
$$

where the maximum is attained at $\hat{u_{i}}=\frac{n}{2} \alpha_{i}+y_{i}$. By (16), we have

$$
R^{*}(\boldsymbol{\alpha})=\sum_{i=1}^{n} \ell_{i}^{*}\left(\alpha_{i}\right)=\sum_{i=1}^{n}\left(\frac{n}{4} \alpha_{i}^{2}+\alpha_{i} y_{i}\right)=\frac{n}{4} \boldsymbol{\alpha}^{\top} \boldsymbol{\alpha}+\mathbf{y}^{\top} \boldsymbol{\alpha} .
$$

By (15), we have the Lagrange dual function to ridge regression:

$$
q(\boldsymbol{\alpha})=-\frac{n}{4} \boldsymbol{\alpha}^{\top} \boldsymbol{\alpha}-\mathbf{y}^{\top} \boldsymbol{\alpha}-\frac{1}{4 \lambda} \boldsymbol{\alpha}^{\top} \mathbf{X} \mathbf{X}^{\top} \boldsymbol{\alpha}
$$

Therefore, a dual problem to ridge regression is:

$$
\max _{\boldsymbol{\alpha} \in \mathbb{R}^{n}} q(\boldsymbol{\alpha})=\max _{\boldsymbol{\alpha} \in \mathbb{R}^{n}}\left[-\frac{1}{4 \lambda} \boldsymbol{\alpha}^{\top}\left(\mathbf{X X}^{\top}+\lambda n \mathbf{I}\right) \boldsymbol{\alpha}-\mathbf{y}^{\top} \boldsymbol{\alpha}\right]
$$

Application to ridge logistic regression. Now $R(\mathbf{u})=\sum_{i=1}^{n} \frac{1}{n} \log \left(1+e^{-y_{i} u_{i}}\right)$, and $\ell_{i}\left(u_{i}\right)=\frac{1}{n} \log \left(1+e^{-y_{i} u_{i}}\right)$. We have

$$
\begin{aligned}
\ell_{i}^{*}\left(\alpha_{i}\right) & =\max _{u_{i} \in \mathbb{R}}\left[\alpha_{i} u_{i}-\frac{1}{n} \log \left(1+e^{-y_{i} u_{i}}\right)\right] \\
& =\frac{1}{n} \max _{u_{i} \in \mathbb{R}}\left[\log \frac{e^{n \alpha_{i} u_{i}}}{1+e^{-y_{i} u_{i}}}\right] \\
& =\frac{1}{n} \max _{u_{i} \in \mathbb{R}}\left[\log \frac{1}{e^{-n \alpha_{i} u_{i}}+e^{-\left(y_{i}+n \alpha_{i}\right) u_{i}}}\right] \\
& =-\frac{1}{n} \min _{u_{i} \in \mathbb{R}} \log \left[e^{-n \alpha_{i} u_{i}}+e^{-\left(y_{i}+n \alpha_{i}\right) u_{i}}\right] \\
& =-\frac{1}{n} \log \left[\min _{u_{i} \in \mathbb{R}}\left[e^{-n \alpha_{i} u_{i}}+e^{-\left(y_{i}+n \alpha_{i}\right) u_{i}}\right]\right] \\
& =-\frac{1}{n} \log \left[\min _{u_{i} \in \mathbb{R}}\left[e^{\left(y_{i} u_{i}\right) \cdot\left(-n y_{i} \alpha_{i}\right)}+e^{\left(y_{i} u_{i}\right) \cdot\left(-n y_{i} \alpha_{i}-1\right)}\right]\right] \\
& =-\frac{1}{n} \log \left[\min _{t_{i} \in \mathbb{R}_{+}}\left[t_{i}^{p_{i}}+t_{i}^{p_{i}-1}\right]\right],
\end{aligned}
$$

where we have changed the optimization variable from $u_{i} \in \mathbb{R}$ to $t_{i}=e^{y_{i} u_{i}} \in \mathbb{R}_{+}$, and denoted

$$
\begin{equation*}
p_{i}:=-n y_{i} \alpha_{i} . \tag{17}
\end{equation*}
$$

Note that in the deduction, we have frequently used the fact that $y_{i}^{2}=1$ since $y_{i} \in$ $\{-1,+1\}$, and $\max (-g)=-\min g$, and that $\exp (\cdot)$ and $\log (\cdot)$ are monotonically increasing functions.

Claim: for any a that is not a function of x, we have

$$
\min _{x>0}\left[x^{a}+x^{a-1}\right]= \begin{cases}\frac{1}{a^{a}(1-a)^{1-a}} & \text { if } 0<a<1 \\ 0 & \text { otherwise }\end{cases}
$$

The claim can be easily verified. Using the claim,

$$
\ell_{i}^{*}\left(\alpha_{i}\right)= \begin{cases}\frac{1}{n}\left(p_{i} \log p_{i}+\left(1-p_{i}\right) \log \left(1-p_{i}\right)\right) & \text { if } 0<p_{i}<1 \\ +\infty & \text { otherwise }\end{cases}
$$

By (16), we have
$R^{*}(\boldsymbol{\alpha})= \begin{cases}\frac{1}{n} \sum_{i=1}^{n}\left(p_{i} \log p_{i}+\left(1-p_{i}\right) \log \left(1-p_{i}\right)\right) & \text { if } 0<p_{i}<1, i=1, \ldots, n, \\ +\infty & \text { otherwise } .\end{cases}$
By (15) and plugging (17) back in, we have a dual problem to ridge logistic regression:

$$
\begin{aligned}
\max _{\boldsymbol{\alpha} \in \mathbb{R}^{n}} & -\frac{1}{4 \lambda} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \mathbf{x}_{i}^{\top} \mathbf{x}_{j} \\
& -\frac{1}{n} \sum_{i=1}^{n}\left(-n y_{i} \alpha_{i} \log \left(-n y_{i} \alpha_{i}\right)+\left(1+n y_{i} \alpha_{i}\right) \log \left(1+n y_{i} \alpha_{i}\right)\right) \\
\text { s.t. } & -\frac{1}{n}<y_{i} \alpha_{i}<0, i=1, \ldots, n,
\end{aligned}
$$

where $\mathbf{x}_{i} \in \mathbb{R}^{p}, i=1, \ldots, n$, are the row vectors of $\mathbf{X} \in \mathbb{R}^{n \times p}$.

