
Quiz #2: Kernel Methods for Machine
Learning

Problem 1

Let X be a set.
1. Give the definition of a positive definite (p.d.) kernel on X .
2. If K1 and K2 are p.d. kernels on X , show that K = K1 + K2 is p.d. on
X .
3. If K1 is a p.d. kernel on X and λ ∈ R+, show that K = λK1 is p.d. on
X .
4. Are the following kernels p.d.? And why?

• For any X :
∀x, x′ ∈ X , K1(x, x

′) = C ,

for a constant C ∈ R.

• For X = R:
∀x, x′ ∈ R , K2(x, x

′) = ex+x′
.

• For X = R+:

∀x, x′ ∈ R+ , K3(x, x
′) = min(x, x′) .

• For X = R:
∀x, x′ ∈ R , K4(x, x

′) = min(x, x′) .

• For X = R+:

∀x, x′ ∈ R+ , K5(x, x
′) = max(x, x′) .

Solutions:
1. There are many answers to this question.
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Definition 1. A p.d. kernel on a set X is a function K : X ×X → R that
is symmetric:

∀x, x′ ∈ X , K(x, x′) = K(x′, x) ,

and that satisfies: ∀n ∈ N,∀x1, . . . , xn ∈ X ,∀α1, . . . , αn ∈ R, it holds that

n∑
i=1

n∑
j=1

αiαjK(xi, xj) ≥ 0 .

Or equivalently, ∀n ∈ N,∀x1, . . . , xn ∈ X , the Gram matrix K is a symmetric,
positive semi-definite matrix.

Definition 2. Due to Aronszajn’s theorem, a kernel is p.d. over X if and
only if there exists a Hilbert space H and a mapping Φ : X → H such that,
∀x, x′ ∈ X :

K(x, x′) = Φ(x)>Φ(x′) .

2. It is trivial that K is symmetric. ∀n ∈ N,∀x1, . . . , xn ∈ X ,∀α1, . . . , αn ∈
R,

n∑
i=1

n∑
j=1

αiαjK(xi, xj) =
n∑

i=1

n∑
j=1

αiαjK1(xi, xj) +
n∑

i=1

n∑
j=1

αiαjK2(xi, xj)

≥ 0 ,

since K1 and K2 are p.d. kernels. K is therefore p.d. by definition.
3. It is trivial that K is symmetric. ∀n ∈ N,∀x1, . . . , xn ∈ X ,∀α1, . . . , αn ∈
R,

n∑
i=1

n∑
j=1

αiαjK(xi, xj) = λ

n∑
i=1

n∑
j=1

αiαjK1(xi, xj)

≥ 0 ,

since K1 is p.d. and λ ≥ 0. K is therefore p.d. by definition.
4.

• K1 is p.d. if and only if C ≥ 0. By definition, it is trivial that K1 is
symmetric. ∀n ∈ N,∀x1, . . . , xn ∈ X , ∀α1, . . . , αn ∈ R,

n∑
i=1

n∑
j=1

αiαjK1(xi, xj) = C

(
n∑

i=1

αi

)2{
≥ 0 if C ≥ 0 ,
≤ 0 if C ≤ 0 . .
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• K2 is p.d. By definition, K2(x, x
′) = Φ(x) · Φ(x′) where Φ(x) = ex.

• K3 is p.d. The symmetry is trivial. Now we show that, ∀n ∈ N,∀x1, . . . , xn ∈
R+, the Gram matrix

K = [min(xi, xj)]i,j=1,...,n

is a positive semi-definite matrix. This is equivalent to showing that all
the eigenvalues of K are non-negative, or equivalently that the deter-
minants of all leading principle minors of K are non-negative. Without
loss of generality, we may assume that 0 ≤ x1 ≤ · · · ≤ xn, we have

K =


x1 x1 · · · x1 x1
x1 x2 · · · x2 x2
...

... · · · ...
...

x1 x2 · · · xn−1 xn−1
x1 x2 · · · xn−1 xn

 .

Let us first show that det(K) ≥ 0. In fact,

det(K) = det


x1 0 · · · 0 0
x1 x2 − x1 · · · 0 0
...

... · · · ...
...

x1 x2 − x1 · · · xn−1 − xn−2 0
x1 x2 − x1 · · · xn−1 − xn−2 xn − xn−1


= x1

n∏
i=2

(xi − xi−1) ,

where the determinant of K remains the same when we sequentially
subtract the (n−1)-th from the n-th column, then subtract the (n−2)-
th column from the (n− 1)-th column, ..., until finally we subtract the
first column from the second column. Since we have assumed that
0 ≤ x1 ≤ · · · ≤ xn, we know det(K) ≥ 0.

Using mathematical induction on all the leading principle minors of K,
we know K is a positive semi-definite matrix. Therefore K3 is p.d.

• K4 is not p.d. Similarly to the reasoning for K3, we know that, ∀x1 ≤
· · · ≤ xn, det(K) = x1

∏n
i=2(xi−xi−1), which can be negative if x1 < 0.

Alternatively, you may reason with a counterexample using a particular
set of xi’s.
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• K5 is not p.d. Similarly to the reasoning for K3, we know that, ∀x1 ≥
· · · ≥ xn ≥ 0, det(K) = x1

∏n
i=2(xi−xi−1), which can be negative if n is

an even number. Alternatively, you may reason with a counterexample
using a particular set of xi’s.

Problem 2

Let K be a p.d. kernel on a set X , and Φ : X → F a mapping to a Hilbert
space F (i.e., a “feature space”) such that

∀x, x′ ∈ X , K(x, x′) = Φ(x)>Φ(x′) .

Let dK : X × X → R be the distance in the feature space, i.e.,

∀x, x′ ∈ X , dK(x, x′) = ‖Φ(x)− Φ(x′) ‖ .

1. For any x, x′ ∈ X , show that we can compute dK(x, x′) using K only (i.e.,
without Φ).
2. Application: take X = R and K(x, x′) = e−(x−x

′)2 , compute dK(1, 2).
3. Show that −d2K is conditionally positive definite, that is: ∀n ∈ N,
∀x1, . . . , xn ∈ X , ∀α1, . . . , αn ∈ R such that

∑n
i=1 αi = 0, it holds that

n∑
i=1

n∑
j=1

αiαjdK(xi, xj)
2 ≤ 0 .

4. Given a set of n points S = (x1, . . . , xn) ∈ X n, let mS be their barycenter
in the feature space, i.e.,

mS =
1

n

n∑
i=1

Φ(xi) .

• Show that the function KS : X × X → R defined as

∀x, x′ ∈ X , KS(x, x′) = (Φ(x)−mS)> (Φ(x′)−mS)

is a p.d. kernel on X .

• For any x, x′ ∈ X , express KS(x, x′) using only the kernel K (i.e.,
without Φ or m).
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• Let K and KS be the Gram matrices of K and KS on S (i.e., the n×n
matrices such that [K]ij = K(xi, xj) and [KS ]ij = KS(xi, xj)). Find an
n× n matrix A such that

KS = AKA .

Solutions:
1. By definition,

dK(x, x′) =
√
‖Φ(x)− Φ(x′) ‖2

=
√

(Φ(x)− Φ(x′))>(Φ(x)− Φ(x′))

=
√
K(x, x) +K(x′, x′)− 2K(x, x′) .

(1)

2. By (1), we have

dK(1, 2) =
√
e−(1−1)2 + e−(2−2)2 − 2e−(1−2)2 =

√
2− 2e−1 .

3. By (1) and K p.d., ∀n ∈ N, ∀x1, . . . , xn ∈ X , ∀α1, . . . , αn ∈ R such that∑n
i=1 αi = 0, it holds that

n∑
i=1

n∑
j=1

αiαjdK(xi, xj)
2

=
n∑

i=1

n∑
j=1

αiαj(K(xi, xi) +K(xj, xj)− 2K(xi, xj))

=

(
n∑

j=1

αj

)
︸ ︷︷ ︸

=0

(
n∑

i=1

αiK(xi, xi)

)
+

(
n∑

i=1

αi

)
︸ ︷︷ ︸

=0

(
n∑

j=1

αjK(xj, xj)

)
− 2

n∑
i=1

n∑
j=1

αiαjK(xi, xj)︸ ︷︷ ︸
≥0

≤0 .

4.

• Denote by ΦS : X → F the mapping defined by ΦS(x) = Φ(x) −mS ,
we have

∀x, x′ ∈ X , KS(x, x′) = ΦS(x)>ΦS(x′) .

Therefore, KS is p.d. by definition.
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• Plugging the definition of mS into KS , we have

KS(x, x′) =

(
Φ(x)− 1

n

n∑
i=1

Φ(xi)

)>(
Φ(x′)− 1

n

n∑
j=1

Φ(xj)

)

= K(x, x′)− 1

n

n∑
j=1

K(x, xj)−
1

n

n∑
i=1

K(x′, xi) +
1

n2

n∑
i=1

n∑
j=1

K(xi, xj) .

• Let Φ,ΦS be the feature matrix corresponding to K,KS respectively,
i.e.:

K = ΦΦ> , KS = ΦSΦ
>
S ,

where Φ = (Φ(x1)| . . . |Φ(xn))> whose row vectors consist of the feature
vectors of x1, . . . , xn, and similarly for ΦS . Denote by 1 the n×n matrix
of 1’s, it is easy to verify that

ΦS = Φ− 1

n
1Φ =

(
I− 1

n
1

)
Φ .

Denote by

A = I− 1

n
1 =

 1− 1
n
· · · − 1

n
...

. . .
...

− 1
n
· · · 1− 1

n


n×n

,

we have A> = A and

KS = ΦSΦ
>
S = AΦΦ>A = AKA .
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