Quiz #2: Kernel Methods for Machine Learning

Problem 1

Let \mathcal{X} be a set.

1. Give the definition of a positive definite (p.d.) kernel on \mathcal{X} .

2. If K_1 and K_2 are p.d. kernels on \mathcal{X} , show that $K = K_1 + K_2$ is p.d. on \mathcal{X} .

3. If K_1 is a p.d. kernel on \mathcal{X} and $\lambda \in \mathbb{R}^+$, show that $K = \lambda K_1$ is p.d. on \mathcal{X} .

- 4. Are the following kernels p.d.? And why?
 - For any \mathcal{X} :

$$\forall x, x' \in \mathcal{X}, \quad K_1(x, x') = C,$$

for a constant $C \in \mathbb{R}$.

• For $\mathcal{X} = \mathbb{R}$:

$$\forall x, x' \in \mathbb{R}, \quad K_2(x, x') = e^{x+x'}.$$

• For $\mathcal{X} = \mathbb{R}^+$:

$$\forall x, x' \in \mathbb{R}^+, \quad K_3(x, x') = \min(x, x').$$

• For $\mathcal{X} = \mathbb{R}$:

$$\forall x, x' \in \mathbb{R}, \quad K_4(x, x') = \min(x, x').$$

• For $\mathcal{X} = \mathbb{R}^+$:

$$\forall x, x' \in \mathbb{R}^+, \quad K_5(x, x') = \max(x, x').$$

Solutions:

1. There are many answers to this question.

Definition 1. A p.d. kernel on a set \mathcal{X} is a function $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ that is symmetric:

$$\forall x, x' \in \mathcal{X}, \quad K(x, x') = K(x', x),$$

and that satisfies: $\forall n \in \mathbb{N}, \forall x_1, \dots, x_n \in \mathcal{X}, \forall \alpha_1, \dots, \alpha_n \in \mathbb{R}$, it holds that

$$\sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j K(x_i, x_j) \ge 0.$$

Or equivalently, $\forall n \in \mathbb{N}, \forall x_1, \dots, x_n \in \mathcal{X}$, the Gram matrix **K** is a symmetric, positive semi-definite matrix.

Definition 2. Due to Aronszajn's theorem, a kernel is p.d. over \mathcal{X} if and only if there exists a Hilbert space \mathcal{H} and a mapping $\Phi : \mathcal{X} \to \mathcal{H}$ such that, $\forall x, x' \in \mathcal{X}$:

$$K(x, x') = \Phi(x)^{\top} \Phi(x') \,.$$

2. It is trivial that K is symmetric. $\forall n \in \mathbb{N}, \forall x_1, \ldots, x_n \in \mathcal{X}, \forall \alpha_1, \ldots, \alpha_n \in \mathbb{R}, \$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j K(x_i, x_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j K_1(x_i, x_j) + \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j K_2(x_i, x_j)$$

$$\geq 0,$$

since K_1 and K_2 are p.d. kernels. K is therefore p.d. by definition. **3.** It is trivial that K is symmetric. $\forall n \in \mathbb{N}, \forall x_1, \ldots, x_n \in \mathcal{X}, \forall \alpha_1, \ldots, \alpha_n \in \mathbb{R}, \mathbb{R}$,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j K(x_i, x_j) = \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j K_1(x_i, x_j)$$
$$\geq 0,$$

since K_1 is p.d. and $\lambda \ge 0$. K is therefore p.d. by definition. 4.

• K_1 is p.d. if and only if $C \ge 0$. By definition, it is trivial that K_1 is symmetric. $\forall n \in \mathbb{N}, \forall x_1, \ldots, x_n \in \mathcal{X}, \forall \alpha_1, \ldots, \alpha_n \in \mathbb{R},$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j K_1(x_i, x_j) = C \left(\sum_{i=1}^{n} \alpha_i\right)^2 \left\{ \begin{array}{l} \ge 0 & \text{if } C \ge 0, \\ \le 0 & \text{if } C \le 0. \end{array} \right.$$

- K_2 is p.d. By definition, $K_2(x, x') = \Phi(x) \cdot \Phi(x')$ where $\Phi(x) = e^x$.
- K_3 is p.d. The symmetry is trivial. Now we show that, $\forall n \in \mathbb{N}, \forall x_1, \ldots, x_n \in \mathbb{R}^+$, the Gram matrix

$$\mathbf{K} = [\min(x_i, x_j)]_{i,j=1,\dots,n}$$

is a positive semi-definite matrix. This is equivalent to showing that all the eigenvalues of **K** are non-negative, or equivalently that the determinants of all leading principle minors of **K** are non-negative. Without loss of generality, we may assume that $0 \le x_1 \le \cdots \le x_n$, we have

$$\mathbf{K} = \begin{bmatrix} x_1 & x_1 & \cdots & x_1 & x_1 \\ x_1 & x_2 & \cdots & x_2 & x_2 \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ x_1 & x_2 & \cdots & x_{n-1} & x_{n-1} \\ x_1 & x_2 & \cdots & x_{n-1} & x_n \end{bmatrix}$$

Let us first show that $det(\mathbf{K}) \geq 0$. In fact,

$$\det(\mathbf{K}) = \det \begin{bmatrix} x_1 & 0 & \cdots & 0 & 0 \\ x_1 & x_2 - x_1 & \cdots & 0 & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ x_1 & x_2 - x_1 & \cdots & x_{n-1} - x_{n-2} & 0 \\ x_1 & x_2 - x_1 & \cdots & x_{n-1} - x_{n-2} & x_n - x_{n-1} \end{bmatrix}$$
$$= x_1 \prod_{i=2}^n (x_i - x_{i-1}),$$

where the determinant of **K** remains the same when we sequentially subtract the (n-1)-th from the *n*-th column, then subtract the (n-2)th column from the (n-1)-th column, ..., until finally we subtract the first column from the second column. Since we have assumed that $0 \le x_1 \le \cdots \le x_n$, we know det $(\mathbf{K}) \ge 0$.

Using mathematical induction on all the leading principle minors of \mathbf{K} , we know \mathbf{K} is a positive semi-definite matrix. Therefore K_3 is p.d.

• K_4 is not p.d. Similarly to the reasoning for K_3 , we know that, $\forall x_1 \leq \cdots \leq x_n$, det(**K**) = $x_1 \prod_{i=2}^n (x_i - x_{i-1})$, which can be negative if $x_1 < 0$. Alternatively, you may reason with a counterexample using a particular set of x_i 's. • K_5 is not p.d. Similarly to the reasoning for K_3 , we know that, $\forall x_1 \geq \cdots \geq x_n \geq 0$, det $(\mathbf{K}) = x_1 \prod_{i=2}^n (x_i - x_{i-1})$, which can be negative if n is an even number. Alternatively, you may reason with a counterexample using a particular set of x_i 's.

Problem 2

Let K be a p.d. kernel on a set \mathcal{X} , and $\Phi : \mathcal{X} \to \mathcal{F}$ a mapping to a Hilbert space \mathcal{F} (i.e., a "feature space") such that

$$\forall x, x' \in \mathcal{X}, \quad K(x, x') = \Phi(x)^{\top} \Phi(x').$$

Let $d_K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be the distance in the feature space, i.e.,

$$\forall x, x' \in \mathcal{X}, \quad d_K(x, x') = \| \Phi(x) - \Phi(x') \|.$$

1. For any $x, x' \in \mathcal{X}$, show that we can compute $d_K(x, x')$ using K only (i.e., without Φ).

2. Application: take $\mathcal{X} = \mathbb{R}$ and $K(x, x') = e^{-(x-x')^2}$, compute $d_K(1, 2)$. **3.** Show that $-d_K^2$ is conditionally positive definite, that is: $\forall n \in \mathbb{N}$, $\forall x_1, \ldots, x_n \in \mathcal{X}, \forall \alpha_1, \ldots, \alpha_n \in \mathbb{R}$ such that $\sum_{i=1}^n \alpha_i = 0$, it holds that

$$\sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j d_K(x_i, x_j)^2 \le 0.$$

4. Given a set of *n* points $\mathcal{S} = (x_1, \ldots, x_n) \in \mathcal{X}^n$, let $m_{\mathcal{S}}$ be their barycenter in the feature space, i.e.,

$$m_{\mathcal{S}} = \frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \,.$$

• Show that the function $K_{\mathcal{S}} : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ defined as

$$\forall x, x' \in \mathcal{X}, \quad K_{\mathcal{S}}(x, x') = (\Phi(x) - m_{\mathcal{S}})^{\top} (\Phi(x') - m_{\mathcal{S}})$$

is a p.d. kernel on \mathcal{X} .

• For any $x, x' \in \mathcal{X}$, express $K_{\mathcal{S}}(x, x')$ using only the kernel K (i.e., without Φ or m).

• Let **K** and **K**_S be the Gram matrices of K and K_S on S (i.e., the $n \times n$ matrices such that $[\mathbf{K}]_{ij} = K(x_i, x_j)$ and $[\mathbf{K}_S]_{ij} = K_S(x_i, x_j)$). Find an $n \times n$ matrix **A** such that

$$\mathbf{K}_{\mathcal{S}} = \mathbf{A}\mathbf{K}\mathbf{A}$$
.

Solutions:

1. By definition,

$$d_{K}(x, x') = \sqrt{\|\Phi(x) - \Phi(x')\|^{2}}$$

= $\sqrt{(\Phi(x) - \Phi(x'))^{\top}(\Phi(x) - \Phi(x'))}$
= $\sqrt{K(x, x) + K(x', x') - 2K(x, x')}$. (1)

2. By (1), we have

$$d_K(1,2) = \sqrt{e^{-(1-1)^2} + e^{-(2-2)^2} - 2e^{-(1-2)^2}} = \sqrt{2 - 2e^{-1}}.$$

3. By (1) and K p.d., $\forall n \in \mathbb{N}, \forall x_1, \ldots, x_n \in \mathcal{X}, \forall \alpha_1, \ldots, \alpha_n \in \mathbb{R}$ such that $\sum_{i=1}^n \alpha_i = 0$, it holds that

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j d_K(x_i, x_j)^2$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j (K(x_i, x_i) + K(x_j, x_j) - 2K(x_i, x_j))$$

$$= \underbrace{\left(\sum_{j=1}^{n} \alpha_j\right)}_{=0} \left(\sum_{i=1}^{n} \alpha_i K(x_i, x_i)\right) + \underbrace{\left(\sum_{i=1}^{n} \alpha_i\right)}_{=0} \left(\sum_{j=1}^{n} \alpha_j K(x_j, x_j)\right) - 2 \underbrace{\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j K(x_i, x_j)}_{\ge 0}$$

$$\leq 0$$

 ≤ 0 .

4.

• Denote by $\Phi_{\mathcal{S}} : \mathcal{X} \to \mathcal{F}$ the mapping defined by $\Phi_{\mathcal{S}}(x) = \Phi(x) - m_{\mathcal{S}}$, we have

$$\forall x, x' \in \mathcal{X}, \quad K_{\mathcal{S}}(x, x') = \Phi_{\mathcal{S}}(x)^{\top} \Phi_{\mathcal{S}}(x').$$

Therefore, $K_{\mathcal{S}}$ is p.d. by definition.

• Plugging the definition of $m_{\mathcal{S}}$ into $K_{\mathcal{S}}$, we have

$$K_{\mathcal{S}}(x,x') = \left(\Phi(x) - \frac{1}{n}\sum_{i=1}^{n}\Phi(x_i)\right)^{\top} \left(\Phi(x') - \frac{1}{n}\sum_{j=1}^{n}\Phi(x_j)\right)$$
$$= K(x,x') - \frac{1}{n}\sum_{j=1}^{n}K(x,x_j) - \frac{1}{n}\sum_{i=1}^{n}K(x',x_i) + \frac{1}{n^2}\sum_{i=1}^{n}\sum_{j=1}^{n}K(x_i,x_j).$$

• Let Φ, Φ_S be the feature matrix corresponding to \mathbf{K}, \mathbf{K}_S respectively, i.e.:

$$\mathbf{K} = \boldsymbol{\Phi} \boldsymbol{\Phi}^\top \,, \quad \mathbf{K}_\mathcal{S} = \boldsymbol{\Phi}_\mathcal{S} \boldsymbol{\Phi}_\mathcal{S}^\top \,,$$

where $\mathbf{\Phi} = (\Phi(x_1)| \dots |\Phi(x_n))^{\top}$ whose row vectors consist of the feature vectors of x_1, \dots, x_n , and similarly for $\mathbf{\Phi}_{\mathcal{S}}$. Denote by **1** the $n \times n$ matrix of 1's, it is easy to verify that

$$\Phi_{\mathcal{S}} = \Phi - \frac{1}{n} \mathbf{1} \Phi = \left(\mathbf{I} - \frac{1}{n} \mathbf{1}\right) \Phi.$$

Denote by

$$\mathbf{A} = \mathbf{I} - \frac{1}{n} \mathbf{1} = \begin{bmatrix} 1 - \frac{1}{n} & \cdots & -\frac{1}{n} \\ \vdots & \ddots & \vdots \\ -\frac{1}{n} & \cdots & 1 - \frac{1}{n} \end{bmatrix}_{n \times n},$$

we have $\mathbf{A}^{\top}=\mathbf{A}$ and

$$\mathbf{K}_{\mathcal{S}} = \boldsymbol{\Phi}_{\mathcal{S}} \boldsymbol{\Phi}_{\mathcal{S}}^{\top} = \mathbf{A} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\top} \mathbf{A} = \mathbf{A} \mathbf{K} \mathbf{A} \,.$$