Quiz \#2: Kernel Methods for Machine Learning

Problem 1

Let \mathcal{X} be a set.

1. Give the definition of a positive definite (p.d.) kernel on \mathcal{X}.
2. If K_{1} and K_{2} are p.d. kernels on \mathcal{X}, show that $K=K_{1}+K_{2}$ is p.d. on \mathcal{X}.
3. If K_{1} is a p.d. kernel on \mathcal{X} and $\lambda \in \mathbb{R}^{+}$, show that $K=\lambda K_{1}$ is p.d. on \mathcal{X}.
4. Are the following kernels p.d.? And why?

- For any \mathcal{X} :

$$
\forall x, x^{\prime} \in \mathcal{X}, \quad K_{1}\left(x, x^{\prime}\right)=C,
$$

for a constant $C \in \mathbb{R}$.

- For $\mathcal{X}=\mathbb{R}$:

$$
\forall x, x^{\prime} \in \mathbb{R}, \quad K_{2}\left(x, x^{\prime}\right)=e^{x+x^{\prime}}
$$

- For $\mathcal{X}=\mathbb{R}^{+}$:

$$
\forall x, x^{\prime} \in \mathbb{R}^{+}, \quad K_{3}\left(x, x^{\prime}\right)=\min \left(x, x^{\prime}\right) .
$$

- For $\mathcal{X}=\mathbb{R}$:

$$
\forall x, x^{\prime} \in \mathbb{R}, \quad K_{4}\left(x, x^{\prime}\right)=\min \left(x, x^{\prime}\right) .
$$

- For $\mathcal{X}=\mathbb{R}^{+}$:

$$
\forall x, x^{\prime} \in \mathbb{R}^{+}, \quad K_{5}\left(x, x^{\prime}\right)=\max \left(x, x^{\prime}\right)
$$

Solutions:

1. There are many answers to this question.

Definition 1. A p.d. kernel on a set \mathcal{X} is a function $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ that is symmetric:

$$
\forall x, x^{\prime} \in \mathcal{X}, \quad K\left(x, x^{\prime}\right)=K\left(x^{\prime}, x\right),
$$

and that satisfies: $\forall n \in \mathbb{N}, \forall x_{1}, \ldots, x_{n} \in \mathcal{X}, \forall \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$, it holds that

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} K\left(x_{i}, x_{j}\right) \geq 0
$$

Or equivalently, $\forall n \in \mathbb{N}, \forall x_{1}, \ldots, x_{n} \in \mathcal{X}$, the Gram matrix \mathbf{K} is a symmetric, positive semi-definite matrix.

Definition 2. Due to Aronszajn's theorem, a kernel is p.d. over \mathcal{X} if and only if there exists a Hilbert space \mathcal{H} and a mapping $\Phi: \mathcal{X} \rightarrow \mathcal{H}$ such that, $\forall x, x^{\prime} \in \mathcal{X}$:

$$
K\left(x, x^{\prime}\right)=\Phi(x)^{\top} \Phi\left(x^{\prime}\right)
$$

2. It is trivial that K is symmetric. $\forall n \in \mathbb{N}, \forall x_{1}, \ldots, x_{n} \in \mathcal{X}, \forall \alpha_{1}, \ldots, \alpha_{n} \in$ \mathbb{R},

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} K\left(x_{i}, x_{j}\right) & =\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} K_{1}\left(x_{i}, x_{j}\right)+\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} K_{2}\left(x_{i}, x_{j}\right) \\
& \geq 0
\end{aligned}
$$

since K_{1} and K_{2} are p.d. kernels. K is therefore p.d. by definition.
3. It is trivial that K is symmetric. $\forall n \in \mathbb{N}, \forall x_{1}, \ldots, x_{n} \in \mathcal{X}, \forall \alpha_{1}, \ldots, \alpha_{n} \in$ \mathbb{R},

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} K\left(x_{i}, x_{j}\right) & =\lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} K_{1}\left(x_{i}, x_{j}\right) \\
& \geq 0
\end{aligned}
$$

since K_{1} is p.d. and $\lambda \geq 0 . K$ is therefore p.d. by definition.
4.

- K_{1} is p.d. if and only if $C \geq 0$. By definition, it is trivial that K_{1} is symmetric. $\forall n \in \mathbb{N}, \forall x_{1}, \ldots, x_{n} \in \mathcal{X}, \forall \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$,

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} K_{1}\left(x_{i}, x_{j}\right)=C\left(\sum_{i=1}^{n} \alpha_{i}\right)^{2} \begin{cases}\geq 0 & \text { if } C \geq 0 \\ \leq 0 & \text { if } C \leq 0\end{cases}
$$

- K_{2} is p.d. By definition, $K_{2}\left(x, x^{\prime}\right)=\Phi(x) \cdot \Phi\left(x^{\prime}\right)$ where $\Phi(x)=e^{x}$.
- K_{3} is p.d. The symmetry is trivial. Now we show that, $\forall n \in \mathbb{N}, \forall x_{1}, \ldots, x_{n} \in$ \mathbb{R}^{+}, the Gram matrix

$$
\mathbf{K}=\left[\min \left(x_{i}, x_{j}\right)\right]_{i, j=1, \ldots, n}
$$

is a positive semi-definite matrix. This is equivalent to showing that all the eigenvalues of \mathbf{K} are non-negative, or equivalently that the determinants of all leading principle minors of \mathbf{K} are non-negative. Without loss of generality, we may assume that $0 \leq x_{1} \leq \cdots \leq x_{n}$, we have

$$
\mathbf{K}=\left[\begin{array}{ccccc}
x_{1} & x_{1} & \cdots & x_{1} & x_{1} \\
x_{1} & x_{2} & \cdots & x_{2} & x_{2} \\
\vdots & \vdots & \cdots & \vdots & \vdots \\
x_{1} & x_{2} & \cdots & x_{n-1} & x_{n-1} \\
x_{1} & x_{2} & \cdots & x_{n-1} & x_{n}
\end{array}\right] .
$$

Let us first show that $\operatorname{det}(\mathbf{K}) \geq 0$. In fact,

$$
\begin{aligned}
\operatorname{det}(\mathbf{K}) & =\operatorname{det}\left[\begin{array}{ccccc}
x_{1} & 0 & \cdots & 0 & 0 \\
x_{1} & x_{2}-x_{1} & \cdots & 0 & 0 \\
\vdots & \vdots & \cdots & \vdots & \vdots \\
x_{1} & x_{2}-x_{1} & \cdots & x_{n-1}-x_{n-2} & 0 \\
x_{1} & x_{2}-x_{1} & \cdots & x_{n-1}-x_{n-2} & x_{n}-x_{n-1}
\end{array}\right] \\
& =x_{1} \prod_{i=2}^{n}\left(x_{i}-x_{i-1}\right)
\end{aligned}
$$

where the determinant of \mathbf{K} remains the same when we sequentially subtract the $(n-1)$-th from the n-th column, then subtract the $(n-2)$ th column from the $(n-1)$-th column, \ldots, until finally we subtract the first column from the second column. Since we have assumed that $0 \leq x_{1} \leq \cdots \leq x_{n}$, we know $\operatorname{det}(\mathbf{K}) \geq 0$.
Using mathematical induction on all the leading principle minors of \mathbf{K}, we know \mathbf{K} is a positive semi-definite matrix. Therefore K_{3} is p.d.

- K_{4} is not p.d. Similarly to the reasoning for K_{3}, we know that, $\forall x_{1} \leq$ $\cdots \leq x_{n}, \operatorname{det}(\mathbf{K})=x_{1} \prod_{i=2}^{n}\left(x_{i}-x_{i-1}\right)$, which can be negative if $x_{1}<0$. Alternatively, you may reason with a counterexample using a particular set of x_{i} 's.
- K_{5} is not p.d. Similarly to the reasoning for K_{3}, we know that, $\forall x_{1} \geq$ $\cdots \geq x_{n} \geq 0, \operatorname{det}(\mathbf{K})=x_{1} \prod_{i=2}^{n}\left(x_{i}-x_{i-1}\right)$, which can be negative if n is an even number. Alternatively, you may reason with a counterexample using a particular set of x_{i} 's.

Problem 2

Let K be a p.d. kernel on a set \mathcal{X}, and $\Phi: \mathcal{X} \rightarrow \mathcal{F}$ a mapping to a Hilbert space \mathcal{F} (i.e., a "feature space") such that

$$
\forall x, x^{\prime} \in \mathcal{X}, \quad K\left(x, x^{\prime}\right)=\Phi(x)^{\top} \Phi\left(x^{\prime}\right) .
$$

Let $d_{K}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be the distance in the feature space, i.e.,

$$
\forall x, x^{\prime} \in \mathcal{X}, \quad d_{K}\left(x, x^{\prime}\right)=\left\|\Phi(x)-\Phi\left(x^{\prime}\right)\right\| .
$$

1. For any $x, x^{\prime} \in \mathcal{X}$, show that we can compute $d_{K}\left(x, x^{\prime}\right)$ using K only (i.e., without Φ).
2. Application: take $\mathcal{X}=\mathbb{R}$ and $K\left(x, x^{\prime}\right)=e^{-\left(x-x^{\prime}\right)^{2}}$, compute $d_{K}(1,2)$.
3. Show that $-d_{K}^{2}$ is conditionally positive definite, that is: $\forall n \in \mathbb{N}$, $\forall x_{1}, \ldots, x_{n} \in \mathcal{X}, \forall \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$ such that $\sum_{i=1}^{n} \alpha_{i}=0$, it holds that

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} d_{K}\left(x_{i}, x_{j}\right)^{2} \leq 0
$$

4. Given a set of n points $\mathcal{S}=\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{X}^{n}$, let $m_{\mathcal{S}}$ be their barycenter in the feature space, i.e.,

$$
m_{\mathcal{S}}=\frac{1}{n} \sum_{i=1}^{n} \Phi\left(x_{i}\right)
$$

- Show that the function $K_{\mathcal{S}}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ defined as

$$
\forall x, x^{\prime} \in \mathcal{X}, \quad K_{\mathcal{S}}\left(x, x^{\prime}\right)=\left(\Phi(x)-m_{\mathcal{S}}\right)^{\top}\left(\Phi\left(x^{\prime}\right)-m_{\mathcal{S}}\right)
$$

is a p.d. kernel on \mathcal{X}.

- For any $x, x^{\prime} \in \mathcal{X}$, express $K_{\mathcal{S}}\left(x, x^{\prime}\right)$ using only the kernel K (i.e., without Φ or m).
- Let \mathbf{K} and $\mathbf{K}_{\mathcal{S}}$ be the Gram matrices of K and $K_{\mathcal{S}}$ on \mathcal{S} (i.e., the $n \times n$ matrices such that $[\mathbf{K}]_{i j}=K\left(x_{i}, x_{j}\right)$ and $\left.\left[\mathbf{K}_{\mathcal{S}}\right]_{i j}=K_{\mathcal{S}}\left(x_{i}, x_{j}\right)\right)$. Find an $n \times n$ matrix \mathbf{A} such that

$$
\mathbf{K}_{\mathcal{S}}=\mathbf{A K A}
$$

Solutions:

1. By definition,

$$
\begin{align*}
d_{K}\left(x, x^{\prime}\right) & =\sqrt{\left\|\Phi(x)-\Phi\left(x^{\prime}\right)\right\|^{2}} \\
& =\sqrt{\left(\Phi(x)-\Phi\left(x^{\prime}\right)\right)^{\top}\left(\Phi(x)-\Phi\left(x^{\prime}\right)\right)} \tag{1}\\
& =\sqrt{K(x, x)+K\left(x^{\prime}, x^{\prime}\right)-2 K\left(x, x^{\prime}\right)} .
\end{align*}
$$

2. By (1), we have

$$
d_{K}(1,2)=\sqrt{e^{-(1-1)^{2}}+e^{-(2-2)^{2}}-2 e^{-(1-2)^{2}}}=\sqrt{2-2 e^{-1}} .
$$

3. By (11) and K p.d., $\forall n \in \mathbb{N}, \forall x_{1}, \ldots, x_{n} \in \mathcal{X}, \forall \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$ such that $\sum_{i=1}^{n} \alpha_{i}=0$, it holds that

$$
\begin{aligned}
& \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} d_{K}\left(x_{i}, x_{j}\right)^{2} \\
= & \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j}\left(K\left(x_{i}, x_{i}\right)+K\left(x_{j}, x_{j}\right)-2 K\left(x_{i}, x_{j}\right)\right) \\
= & \underbrace{\left(\sum_{j=1}^{n} \alpha_{j}\right)}_{=0}\left(\sum_{i=1}^{n} \alpha_{i} K\left(x_{i}, x_{i}\right)\right)+\underbrace{\left(\sum_{i=1}^{n} \alpha_{i}\right)}_{=0}\left(\sum_{j=1}^{n} \alpha_{j} K\left(x_{j}, x_{j}\right)\right)-2 \underbrace{\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} K\left(x_{i}, x_{j}\right)}_{\geq 0} \\
\leq & 0 .
\end{aligned}
$$

4.

- Denote by $\Phi_{\mathcal{S}}: \mathcal{X} \rightarrow \mathcal{F}$ the mapping defined by $\Phi_{\mathcal{S}}(x)=\Phi(x)-m_{\mathcal{S}}$, we have

$$
\forall x, x^{\prime} \in \mathcal{X}, \quad K_{\mathcal{S}}\left(x, x^{\prime}\right)=\Phi_{\mathcal{S}}(x)^{\top} \Phi_{\mathcal{S}}\left(x^{\prime}\right)
$$

Therefore, $K_{\mathcal{S}}$ is p.d. by definition.

- Plugging the definition of $m_{\mathcal{S}}$ into $K_{\mathcal{S}}$, we have

$$
\begin{aligned}
K_{\mathcal{S}}\left(x, x^{\prime}\right) & =\left(\Phi(x)-\frac{1}{n} \sum_{i=1}^{n} \Phi\left(x_{i}\right)\right)^{\top}\left(\Phi\left(x^{\prime}\right)-\frac{1}{n} \sum_{j=1}^{n} \Phi\left(x_{j}\right)\right) \\
& =K\left(x, x^{\prime}\right)-\frac{1}{n} \sum_{j=1}^{n} K\left(x, x_{j}\right)-\frac{1}{n} \sum_{i=1}^{n} K\left(x^{\prime}, x_{i}\right)+\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} K\left(x_{i}, x_{j}\right) .
\end{aligned}
$$

- Let $\boldsymbol{\Phi}, \boldsymbol{\Phi}_{\mathcal{S}}$ be the feature matrix corresponding to $\mathbf{K}, \mathbf{K}_{\mathcal{S}}$ respectively, i.e.:

$$
\mathbf{K}=\boldsymbol{\Phi} \boldsymbol{\Phi}^{\top}, \quad \mathbf{K}_{\mathcal{S}}=\boldsymbol{\Phi}_{\mathcal{S}} \boldsymbol{\Phi}_{\mathcal{S}}^{\top}
$$

where $\boldsymbol{\Phi}=\left(\Phi\left(x_{1}\right)|\ldots| \Phi\left(x_{n}\right)\right)^{\top}$ whose row vectors consist of the feature vectors of x_{1}, \ldots, x_{n}, and similarly for $\boldsymbol{\Phi}_{\mathcal{S}}$. Denote by $\mathbf{1}$ the $n \times n$ matrix of 1 's, it is easy to verify that

$$
\mathbf{\Phi}_{\mathcal{S}}=\mathbf{\Phi}-\frac{1}{n} \mathbf{1} \mathbf{\Phi}=\left(\mathbf{I}-\frac{1}{n} \mathbf{1}\right) \mathbf{\Phi} .
$$

Denote by

$$
\mathbf{A}=\mathbf{I}-\frac{1}{n} \mathbf{1}=\left[\begin{array}{ccc}
1-\frac{1}{n} & \cdots & -\frac{1}{n} \\
\vdots & \ddots & \vdots \\
-\frac{1}{n} & \cdots & 1-\frac{1}{n}
\end{array}\right]_{n \times n}
$$

we have $\mathbf{A}^{\top}=\mathbf{A}$ and

$$
\mathbf{K}_{\mathcal{S}}=\Phi_{\mathcal{S}} \boldsymbol{\Phi}_{\mathcal{S}}^{\top}=\mathbf{A} \Phi \Phi^{\top} \mathbf{A}=\mathbf{A K A}
$$

