MVA "Kernel methods" Homework 5

Jean-Philippe Vert

Due March 23, 2011

1. For any n > 0, show that the $n \times n$ Hankel matrix $A_{ij} = \frac{1}{1+i+j}$ is positive semidefinite. 2. Describe the functions (-1) and (-1) merely that

2. Describe the functions $\phi: [0,1] \mapsto \mathbb{R}$ such that:

$$K(x,y) = \phi\left(\max(x+y-1,0)\right)$$

is a positive definite kernel on [0, 1].

3. Describe the functions $\phi : \mathbb{R}^+ \mapsto \mathbb{R}$ such that:

$$K(x,y) = \phi\left(\max(x,y)\right)$$

is a positive definite kernel on \mathbb{R}^+ .