MVA "Kernel methods" Homework 1

Jean-Philippe Vert

Due January 29, 2014

Exercice 1. Combining kernels.

1. Let K_{1} and K_{2} be two positive definite (p.d.) kernels on a set \mathcal{X}. Show that the functions $K_{1}+K_{2}$ and $K_{1} \times K_{2}$ are also p.d. on \mathcal{X}.
2. Let $\left(K_{i}\right)_{i \geq 1}$ a sequence of p.d. kernel on a set \mathcal{X} such that, for any $(x, y) \in \mathcal{X}^{2}$, the sequence $\left(K_{i}(x, y)\right)_{i \geq 0}$ be convergent. Show that the pointwise limit:

$$
K(x, y)=\lim _{i \rightarrow+\infty} K_{i}(x, y)
$$

is also p.d. (assuming the limit exists for any x, y).
3. Show that the following kernel is p.d.:

$$
\forall x, y \in \mathbb{R} \quad K(x, y)=3^{x y}
$$

Exercice 2. Completeness of the RKHS.

We want to finish the construction of the RKHS associated to a positive definite kernel K given in the course. Remember we have defined the set of functions:

$$
\mathcal{H}_{0}=\left\{\sum_{i=1}^{n} \alpha_{i} K_{x_{i}}: n \in \mathbb{N}, \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}, x_{1}, \ldots, x_{n} \in \mathcal{X}\right\}
$$

and for any two functions $f, g \in \mathcal{H}_{0}$, given by:

$$
f=\sum_{i=1}^{m} a_{i} K_{\mathbf{x}_{i}}, \quad g=\sum_{j=1}^{n} b_{j} K_{\mathbf{y}_{j}},
$$

we have defined the operation:

$$
\langle f, g\rangle_{\mathcal{H}_{0}}:=\sum_{i, j} a_{i} b_{j} K\left(\mathbf{x}_{i}, \mathbf{y}_{j}\right) .
$$

In the course we have shown that \mathcal{H}_{0} endowed with this inner product is a preHilbert space. Let us now show how to finish the construction of the RKHS from \mathcal{H}_{0}

1. Show that any Cauchy sequence $\left(f_{n}\right)$ in \mathcal{H}_{0} converges pointwisely to a function $f: \mathcal{X} \rightarrow \mathbb{R}$ defined by $f(x)=\lim _{n \rightarrow+\infty} f_{n}(x)$.
2. Show that any Cauchy sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in \mathcal{H}_{0} which converges pointwise to 0 satisfies:

$$
\lim _{n \rightarrow+\infty}\left\|f_{n}\right\|_{\mathcal{H}_{0}}=0
$$

3. Let $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$ be the set of functions $f: \mathcal{X} \rightarrow \mathbb{R}$ which are pointwise limits of Cauchy sequences in \mathcal{H}_{0}, i.e., if $\left(f_{n}\right)$ is a Cauchy sequence in \mathcal{H}_{0}, then $f(x)=\lim _{n \rightarrow+\infty} f_{n}(x)$. Show that $\mathcal{H}_{0} \subset \mathcal{H}$.
4. If $\left(f_{n}\right)$ and $\left(g_{n}\right)$ are two Cauchy sequences in \mathcal{H}_{0}, which converge pointwisely to two functions f and $g \in \mathcal{H}$, show that the inner product $\left\langle f_{n}, g_{n}\right\rangle_{\mathcal{H}_{0}}$ converges to a number which only depends on f and g. This allows us to define formally the operation:

$$
\langle f, g\rangle_{\mathcal{H}}=\lim _{n \rightarrow+\infty}\left\langle f_{n}, g_{n}\right\rangle_{\mathcal{H}_{0}}
$$

5. Show that $\langle., .\rangle_{\mathcal{H}}$ is an inner product on \mathcal{H}.
6. Show that \mathcal{H}_{0} is dense in \mathcal{H} (with respect to the metric defined by the inner product $\langle., .\rangle_{\mathcal{H}}$)
7. Show that \mathcal{H} is complete.
8. Show that \mathcal{H} is a RKHS whose reproducing kernel is K.

Exercice 3. Uniqueness of the RKHS

Prove that if $K: \mathcal{X} \times \mathcal{X}$ is a positive definite function, then it is the r.k. of a unique RKHS. To prove it, you can consider two possible RKHS \mathcal{H} and \mathcal{H}^{\prime}, and show that (i) they contain the same elements and (ii) their inner products are the same. (Hint: consider the linear space spanned by the functions $K_{x}: t \mapsto K(x, t)$, and use the fact that a linear subspace \mathcal{F} of a Hilbert space \mathcal{H} is dense in \mathcal{H} if and only 0 is the only vector orthgonal to all vectors in \mathcal{F})

