MVA "Kernel methods" Homework 1

Jean-Philippe Vert

Due January 29, 2014

Exercice 1. Combining kernels.

1. Let K_1 and K_2 be two positive definite (p.d.) kernels on a set \mathcal{X} . Show that the functions $K_1 + K_2$ and $K_1 \times K_2$ are also p.d. on \mathcal{X} . **2.** Let $(K_i)_{i\geq 1}$ a sequence of p.d. kernel on a set \mathcal{X} such that, for any $(x, y) \in \mathcal{X}^2$, the sequence $(K_i(x, y))_{i\geq 0}$ be convergent. Show that the pointwise limit:

$$K(x,y) = \lim_{i \to +\infty} K_i(x,y)$$

is also p.d. (assuming the limit exists for any x, y). 3. Show that the following kernel is p.d.:

$$\forall x, y \in \mathbb{R} \quad K(x, y) = 3^{xy}.$$

Exercice 2. Completeness of the RKHS.

We want to finish the construction of the RKHS associated to a positive definite kernel K given in the course. Remember we have defined the set of functions:

$$\mathcal{H}_0 = \left\{ \sum_{i=1}^n \alpha_i K_{x_i} : n \in \mathbb{N}, \alpha_1, \dots, \alpha_n \in \mathbb{R}, x_1, \dots, x_n \in \mathcal{X} \right\}$$

and for any two functions $f, g \in \mathcal{H}_0$, given by:

$$f = \sum_{i=1}^{m} a_i K_{\mathbf{x}_i}, \quad g = \sum_{j=1}^{n} b_j K_{\mathbf{y}_j},$$

we have defined the operation:

$$\langle f, g \rangle_{\mathcal{H}_0} := \sum_{i,j} a_i b_j K\left(\mathbf{x}_i, \mathbf{y}_j\right)$$

In the course we have shown that \mathcal{H}_0 endowed with this inner product is a pre-Hilbert space. Let us now show how to finish the construction of the RKHS from \mathcal{H}_0

1. Show that any Cauchy sequence (f_n) in \mathcal{H}_0 converges pointwisely to a function $f : \mathcal{X} \to \mathbb{R}$ defined by $f(x) = \lim_{n \to +\infty} f_n(x)$.

2. Show that any Cauchy sequence $(f_n)_{n \in \mathbb{N}}$ in \mathcal{H}_0 which converges pointwise to 0 satisfies:

$$\lim_{n \to +\infty} \|f_n\|_{\mathcal{H}_0} = 0.$$

3. Let $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$ be the set of functions $f : \mathcal{X} \to \mathbb{R}$ which are pointwise limits of Cauchy sequences in \mathcal{H}_0 , i.e., if (f_n) is a Cauchy sequence in \mathcal{H}_0 , then $f(x) = \lim_{n \to +\infty} f_n(x)$. Show that $\mathcal{H}_0 \subset \mathcal{H}$.

4. If (f_n) and (g_n) are two Cauchy sequences in \mathcal{H}_0 , which converge pointwisely to two functions f and $g \in \mathcal{H}$, show that the inner product $\langle f_n, g_n \rangle_{\mathcal{H}_0}$ converges to a number which only depends on f and g. This allows us to define formally the operation:

$$\langle f,g \rangle_{\mathcal{H}} = \lim_{n \to +\infty} \langle f_n,g_n \rangle_{\mathcal{H}_0} .$$

5. Show that $\langle ., . \rangle_{\mathcal{H}}$ is an inner product on \mathcal{H} .

6. Show that \mathcal{H}_0 is dense in \mathcal{H} (with respect to the metric defined by the inner product $\langle ., . \rangle_{\mathcal{H}}$)

7. Show that \mathcal{H} is complete.

8. Show that \mathcal{H} is a RKHS whose reproducing kernel is K.

Exercice 3. Uniqueness of the RKHS

Prove that if $K : \mathcal{X} \times \mathcal{X}$ is a positive definite function, then it is the r.k. of a unique RKHS. To prove it, you can consider two possible RKHS \mathcal{H} and \mathcal{H}' , and show that (i) they contain the same elements and (ii) their inner products are the same. (Hint: consider the linear space spanned by the functions $K_x : t \mapsto K(x, t)$, and use the fact that a linear subspace \mathcal{F} of a Hilbert space \mathcal{H} is dense in \mathcal{H} if and only 0 is the only vector orthgonal to all vectors in \mathcal{F})