MVA "Kernel methods" Homework 2

Jean-Philippe Vert

Due February 5, 2014

Exercice 1. Min/max kernels

1. Show that

 $K_1(x,y) = \min(x,y)$

is positive definite on $\mathbb{R}^+,$ and describe its RKHS.

2. Show that

$$K_2(x,y) = \frac{\min(x,y)}{\max(x,y)}$$

is positive definite on $\mathbb{R}^+ \setminus \{0\}$.

3. Let \mathcal{X} be a set and $f, g: \mathcal{X} \to \mathbb{R}_+$ two non-negative functions. Show that

$$K_3(x, y) = \min(f(x)g(y), f(y)g(x))$$

is positive definite on \mathcal{X} .

Exercice 2. Kernel K-means, kernel PCA and spectral clustering

In order to cluster a set of vectors $x_1, \ldots, x_n \in \mathbb{R}^p$ into K groups, we consider the minimization of:

$$C(z,\mu) = \sum_{i=1}^{n} \|x_i - \mu_{z_i}\|^2$$

over the cluster assignment variable z_i (taking values in $1, \ldots, K$ for all $i = 1, \ldots, n$) and over the cluster means $\mu_i \in \mathbb{R}^p, i = 1, \ldots, K$.

1. Starting from an initial assignment z^0 , we can try to minimize $C(z, \mu)$ by iterating:

$$\mu^{i} = \underset{\mu}{\operatorname{argmin}} C(z^{i}, \mu), \qquad z^{i+1} = \underset{z}{\operatorname{argmin}} C(z, \mu^{i}).$$

Explicit how both minimization can be carried out (note: this method is called k-means).

2. Propose a similar iterative algorithm to perform k-means in the RKHS \mathcal{H} of a p.d. kernel K over \mathbb{R}^p , i.e., to minimize:

$$C_K(z,\mu) = \sum_{i=1}^n \|\Phi(x_i) - \mu_{z_i}\|^2,$$

where $\Phi : \mathbb{R}^p \to \mathcal{H}$ satisfies $\Phi(x)^\top \Phi(x') = K(x, x')$.

3. Let Z be the $n \times K$ assignment matrix with values $Z_{ij} = 1$ if x_i is assigned to cluster j, 0 otherwise. Let $N_j = \sum_{i=1}^n Z_{ij}$ be the number of points assigned to cluster j, and L be the $K \times K$ diagonal matrix with entries $L_{ii} = 1/N_i$. Show that minimizing $C_K(z, \mu)$ is equivalent to maximizing over the assignment matrix Z the trace of $L^{1/2}Z^{\top}KZL^{1/2}$.

4. Let $H = ZL^{1/2}$. What can we say about $H^{\top}H$? Do you see a connection between kernel k-means and kernel PCA? Propose an algorithm to estimate Z from the solution of kernel PCA.

5. Implement the two variants of kernel k-means (Questions 2 and 4). Test them with different kernels (linear, Gaussian) on the *Libras Movement Data Set*¹ (n = 360, p = 90, K = 15). Visualize the data mapped to the first two principal components for different kernels, and check how well clustering recovers the 15 classes. (note: only use the first 90 attributes for clustering, the 91st one is the class label).

¹http://archive.ics.uci.edu/ml/datasets/Libras+Movement