MVA "Kernel methods" Homework 5

Jean-Philippe Vert

Due March 5, 2014

Exercice 1. MKL on a DAG

Let $V = (v_1, \ldots, v_M)$ be the vertices of a directed acyclic graph (DAG). For any $v \in V$, we denote by $D(v) \subset V$ the set of descendants of v (including itself), and let $d_v \ge 0$ be a weight associated to each vertex v. We assume that to each vertex $v \in V$ is associated a positive definite kernel K_v over a space \mathcal{X} .

a. Using the notations of the course (slide 159), show that the following *weighted* MKL with the set of kernels $\{K_v : v \in V\}$:

$$\min_{(f_{v_1},\dots,f_{v_M})\in\mathcal{H}_{K_{v_1}}\times\dots\times\mathcal{H}_{K_{v_M}}}\left\{R\left(\sum_{v\in V}f_v^n\right)+\lambda\left(\sum_{v\in V}d_v\|f_v\|_{\mathcal{H}_{K_v}}\right)^2\right\}$$

is equivalent to solving:

$$\min_{\eta \in \Sigma} \min_{f \in \mathcal{H}_{K_{\eta}}} \left\{ R(f^n) + \lambda \| f \|_{\mathcal{H}_{K_{\eta}}}^2 \right\}$$

for some set Σ to be determined.

b. We now consider the following variant of MKL which takes the graph structure into account:

$$\min_{(f_{v_1},\dots,f_{v_M})\in\mathcal{H}_{K_{v_1}}\times\dots\times\mathcal{H}_{K_{v_M}}}\left\{R\left(\sum_{v\in V}f_v^n\right)+\lambda\left(\sum_{v\in V}d_v\left(\sum_{w\in D(v)}\|f_w\|_{\mathcal{H}_{K_w}}^2\right)^{\frac{1}{2}}\right)^2\right\}$$
(1)

Can you intuitively explain why we may want to do this, and what we can expect from the solution of this formulation?

c. Show that the MKL formulation (1) is equivalent to solving:

$$\min_{\eta \in \Sigma_V} \min_{f \in \mathcal{H}_{K_\eta}} \left\{ R(f^n) + \lambda \| f \|_{\mathcal{H}_{K_\eta}}^2 \right\}$$

for some set Σ_V to be determined.

d. Show that if the DAG is a tree, then Σ_V is convex. Is it also convex for a general DAG?

Exercice 2. Sobolev RKHS

Show that the set

 $\mathcal{H} = \left\{ f: \left[0,1\right] \mapsto \mathbb{R}, \text{absolutely continuous}, f' \in L^2\left(\left[0,1\right]\right), f\left(0\right) = f(1) = 0 \right\}$

endowed with the bilinear form:

$$\forall (f,g) \in \mathcal{F}^2 \langle f,g \rangle_{\mathcal{H}} = \int_0^1 f'(u) g'(u) du$$

is an RKHS, and determine its reproducing kernel.