MVA "Kernel methods" Homework 1

Jean-Philippe Vert

Due January 28, 2015

Exercice 1. RKHS of the polynomial kernel

Describe the RKHS of the polynomial kernel

$$
\forall\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \in \mathbb{R}^{p}, \quad K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(\langle\mathbf{x}, \mathbf{y}\rangle_{\mathbb{R}^{p}}+1\right)^{2}
$$

Exercice 2. Combining kernels.

1. Let K_{1} and K_{2} be two positive definite (p.d.) kernels on a set \mathcal{X}. Show that the functions $K_{1}+K_{2}$ and $K_{1} \times K_{2}$ are also p.d. on \mathcal{X}.
2. Let $\left(K_{i}\right)_{i \geq 1}$ a sequence of p.d. kernel on a set \mathcal{X} such that, for any $(x, y) \in \mathcal{X}^{2}$, the sequence $\left(K_{i}(x, y)\right)_{i \geq 0}$ be convergent. Show that the pointwise limit:

$$
K(x, y)=\lim _{i \rightarrow+\infty} K_{i}(x, y)
$$

is also p.d. (assuming the limit exists for any x, y).

Exercice 3. Quizz

Which of the following are p.d. kernels?

1. $\mathcal{X}=(-1,1), \quad K\left(\mathrm{x}, \mathrm{x}^{\prime}\right)=\frac{1}{1-\mathrm{xx}^{\prime}}$
2. $\mathcal{X}=\mathbb{N}, \quad K\left(\mathrm{x}, \mathrm{x}^{\prime}\right)=2^{\mathrm{xx}}$
3. $\mathcal{X}=\mathbb{R}_{+}, \quad K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\log \left(1+\mathrm{xx}^{\prime}\right)$
4. $\mathcal{X}=\mathbb{R}, \quad K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{2}\right)$
5. $\mathcal{X}=\mathbb{R}, \quad K\left(\mathbf{x}, \mathrm{x}^{\prime}\right)=\cos \left(\mathrm{x}+\mathrm{x}^{\prime}\right)$
6. $\mathcal{X}=\mathbb{R}, \quad K\left(\mathbf{x}, \mathrm{x}^{\prime}\right)=\cos \left(\mathrm{x}-\mathrm{x}^{\prime}\right)$
7. $\mathcal{X}=\mathbb{R}_{+}, \quad K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\min \left(\mathbf{x}, \mathbf{x}^{\prime}\right)$
8. $\mathcal{X}=\mathbb{R}_{+}, \quad K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\max \left(\mathbf{x}, \mathbf{x}^{\prime}\right)$
9. $\mathcal{X}=\mathbb{R}_{+}, \quad K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\min \left(\mathbf{x}, \mathrm{x}^{\prime}\right) / \max \left(\mathbf{x}, \mathrm{x}^{\prime}\right)$
10. $\mathcal{X}=\mathbb{N}, \quad K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=G C D\left(\mathbf{x}, \mathrm{x}^{\prime}\right)$
11. $\mathcal{X}=\mathbb{N}, \quad K\left(\mathrm{x}, \mathrm{x}^{\prime}\right)=\operatorname{LCM}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$
12. $\mathcal{X}=\mathbb{N}, \quad K\left(\mathrm{x}, \mathrm{x}^{\prime}\right)=G C D\left(\mathrm{x}, \mathrm{x}^{\prime}\right) / L C M\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$

Note: bonus points if your proofs are particularly elegant or unique!

