MVA "Kernel methods" Homework 1

Jean-Philippe Vert

Due January 28, 2015

Exercice 1. RKHS of the polynomial kernel

Describe the RKHS of the polynomial kernel

$$\forall (\mathbf{x}, \mathbf{x}') \in \mathbb{R}^p, \quad K(\mathbf{x}, \mathbf{x}') = (\langle \mathbf{x}, \mathbf{y} \rangle_{\mathbb{R}^p} + 1)^2$$

Exercice 2. Combining kernels.

1. Let K_1 and K_2 be two positive definite (p.d.) kernels on a set \mathcal{X} . Show that the functions $K_1 + K_2$ and $K_1 \times K_2$ are also p.d. on \mathcal{X} .

2. Let $(K_i)_{i\geq 1}$ a sequence of p.d. kernel on a set \mathcal{X} such that, for any $(x, y) \in \mathcal{X}^2$, the sequence $(K_i(x, y))_{i\geq 0}$ be convergent. Show that the pointwise limit:

$$K(x,y) = \lim_{i \to +\infty} K_i(x,y)$$

is also p.d. (assuming the limit exists for any x, y).

Exercice 3. Quizz

Which of the following are p.d. kernels?

- 1. $\mathcal{X} = (-1, 1), \quad K(\mathbf{x}, \mathbf{x}') = \frac{1}{1 \mathbf{x}\mathbf{x}'}$
- 2. $\mathcal{X} = \mathbb{N}, \quad K(\mathbf{x}, \mathbf{x}') = 2^{\mathbf{x}\mathbf{x}'}$
- 3. $\mathcal{X} = \mathbb{R}_+, \quad K(\mathbf{x}, \mathbf{x}') = \log(1 + \mathbf{x}\mathbf{x}')$

4. $\mathcal{X} = \mathbb{R}$, $K(\mathbf{x}, \mathbf{x}') = \exp(-|\mathbf{x} - \mathbf{x}'|^2)$ 5. $\mathcal{X} = \mathbb{R}$, $K(\mathbf{x}, \mathbf{x}') = \cos(\mathbf{x} + \mathbf{x}')$ 6. $\mathcal{X} = \mathbb{R}$, $K(\mathbf{x}, \mathbf{x}') = \cos(\mathbf{x} - \mathbf{x}')$ 7. $\mathcal{X} = \mathbb{R}_+$, $K(\mathbf{x}, \mathbf{x}') = \min(\mathbf{x}, \mathbf{x}')$ 8. $\mathcal{X} = \mathbb{R}_+$, $K(\mathbf{x}, \mathbf{x}') = \max(\mathbf{x}, \mathbf{x}')$ 9. $\mathcal{X} = \mathbb{R}_+$, $K(\mathbf{x}, \mathbf{x}') = \min(\mathbf{x}, \mathbf{x}') / \max(\mathbf{x}, \mathbf{x}')$ 10. $\mathcal{X} = \mathbb{N}$, $K(\mathbf{x}, \mathbf{x}') = GCD(\mathbf{x}, \mathbf{x}')$ 11. $\mathcal{X} = \mathbb{N}$, $K(\mathbf{x}, \mathbf{x}') = LCM(\mathbf{x}, \mathbf{x}')$ 12. $\mathcal{X} = \mathbb{N}$, $K(\mathbf{x}, \mathbf{x}') = GCD(\mathbf{x}, \mathbf{x}') / LCM(\mathbf{x}, \mathbf{x}')$

Note: bonus points if your proofs are particularly elegant or unique!