MVA "Kernel methods" Homework 3

Jean-Philippe Vert

Due February 11, 2015

Exercice 1.

Let $(x_1, y_1), \ldots, (x_n, y_n)$ a training set of examples where $x_i \in \mathcal{X}$, a space endowed with a positive definite kernel K, and $y_i \in \{-1, 1\}$, for $i = 1, \ldots, n$. \mathcal{H}_K denotes the RKHS of the kernel K. We want to learn a function $f : \mathcal{X} \mapsto \mathbb{R}$ by solving the following optimization problem:

$$\min_{f \in \mathcal{H}_K} \frac{1}{n} \sum_{i=1}^n \ell_{y_i} \left(f(x_i) \right) \quad \text{such that} \quad \| f \|_{\mathcal{H}_K} \le B , \tag{1}$$

where ℓ_y is a convex loss functions (for $y \in \{-1, 1\}$) and B > 0 is a parameter. **a.** Show that there exists $\lambda \ge 0$ such that the solution to problem (1) can be found be solving the following problem:

$$\min_{\alpha \in \mathbb{R}^n} R(K\alpha) + \lambda \alpha^\top K\alpha \,, \tag{2}$$

where K is the $n \times n$ Gram matrix and $R : \mathbb{R}^n \mapsto \mathbb{R}$ should be explicited. **b.** Compute the Fenchel-Legendre transform R^* of R in terms of the Fenchel-Legendre transform ℓ_y^* of ℓ_y .

$$f^*(u) = \sup_{x \in \mathbb{R}^N} \langle x, u \rangle - f(x)$$
.

¹For any function $f: \mathbb{R}^N \to \mathbb{R}$, the *Fenchel-Legendre transform* (or *convex conjugate*) of f is the function $f^*: \mathbb{R}^N \to \mathbb{R}$ defined by

c. Adding the slack variable $u=K\alpha$, the problem (1) can be rewritten as a constrained optimization problem:

$$\min_{\alpha \in \mathbb{R}^n, u \in \mathbb{R}^n} R(u) + \lambda \alpha^\top K \alpha \quad \text{such that} \quad u = K \alpha \,. \tag{3}$$

Express the dual problem of (3) in terms of R^* , and explain how a solution to (3) can be found from a solution to the dual problem.

d. Explicit the dual problem for the logistic and squared hinge losses:

$$\ell_y(u) = \log(1 + e^{-yu}).$$

$$\ell_y(u) = \max(0, 1 - yu)^2.$$