MVA "Kernel methods" Homework 3

Jean-Philippe Vert

Due February 11, 2015

Exercice 1.

Let $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ a training set of examples where $x_{i} \in \mathcal{X}$, a space endowed with a positive definite kernel K, and $y_{i} \in\{-1,1\}$, for $i=1, \ldots, n$. \mathcal{H}_{K} denotes the RKHS of the kernel K. We want to learn a function $f: \mathcal{X} \mapsto \mathbb{R}$ by solving the following optimization problem:

$$
\begin{equation*}
\min _{f \in \mathcal{H}_{K}} \frac{1}{n} \sum_{i=1}^{n} \ell_{y_{i}}\left(f\left(x_{i}\right)\right) \quad \text { such that } \quad\|f\|_{\mathcal{H}_{K}} \leq B \tag{1}
\end{equation*}
$$

where ℓ_{y} is a convex loss functions (for $y \in\{-1,1\}$) and $B>0$ is a parameter. a. Show that there exists $\lambda \geq 0$ such that the solution to problem (1) can be found be solving the following problem:

$$
\begin{equation*}
\min _{\alpha \in \mathbb{R}^{n}} R(K \alpha)+\lambda \alpha^{\top} K \alpha \tag{2}
\end{equation*}
$$

where K is the $n \times n$ Gram matrix and $R: \mathbb{R}^{n} \mapsto \mathbb{R}$ should be explicited.
b. Compute the Fenchel-Legendre transform ${ }^{1} R^{*}$ of R in terms of the FenchelLegendre transform ℓ_{y}^{*} of ℓ_{y}.

[^0]c. Adding the slack variable $u=K \alpha$, the problem (1) can be rewritten as a constrained optimization problem:
\[

$$
\begin{equation*}
\min _{\alpha \in \mathbb{R}^{n}, u \in \mathbb{R}^{n}} R(u)+\lambda \alpha^{\top} K \alpha \quad \text { such that } \quad u=K \alpha \tag{3}
\end{equation*}
$$

\]

Express the dual problem of (3) in terms of R^{*}, and explain how a solution to (3) can be found from a solution to the dual problem.
d. Explicit the dual problem for the logistic and squared hinge losses:

$$
\begin{aligned}
\ell_{y}(u) & =\log \left(1+e^{-y u}\right) \\
\ell_{y}(u) & =\max (0,1-y u)^{2}
\end{aligned}
$$

[^0]: ${ }^{1}$ For any function $f: \mathbb{R}^{N} \mapsto \mathbb{R}$, the Fenchel-Legendre transform (or convex conjugate) of f is the function $f^{*}: \mathbb{R}^{N} \mapsto \mathbb{R}$ defined by

 $$
 f^{*}(u)=\sup _{x \in \mathbb{R}^{N}}\langle x, u\rangle-f(x) .
 $$

