"Kernel methods in machine learning" Homework 2 Due February 3, 2021, 3pm

Julien Mairal and Jean-Philippe Vert

Exercice 1.

Let \mathcal{X} be a set and \mathcal{F} be a Hilbert space. Let $\Psi : \mathcal{X} \to \mathcal{F}$, and $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be:

$$\forall x, x' \in \mathcal{X}, \quad K(x, x') = \langle \Psi(x), \Psi(x') \rangle_{\mathcal{F}}.$$

Show that K is a positive definite kernel on \mathcal{X} , and describe its RKHS \mathcal{H} . (*Hint: Show that any function of the form* $f_w(x) = \langle \Psi(x), w \rangle_{\mathcal{F}}$ *is in* \mathcal{H} *, for* $w \in \mathcal{F}$ *, and explicit its norm.*)

Exercice 2.

Prove that for any p.d. kernel K on a space \mathcal{X} , a function $f : \mathcal{X} \to \mathbb{R}$ belongs to the RKHS \mathcal{H} with kernel K if and only if there exists $\lambda > 0$ such that $K(\mathbf{x}, \mathbf{x}') - \lambda f(\mathbf{x}) f(\mathbf{x}')$ is p.d.

(Hint: you can use the result of Exercice 5.1. that we discussed in the course.)