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What we know how to solve
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Main goal of this course

Extend
well-understood, linear statistical learning techniques
to
real-world, complicated, structured, high-dimensional data
based on
a rigorous mathematical framework
leading to

practical modelling tools and algorithms
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@ Learning in high dimension

@ Learning with /5 regularization
@ Ridge regression
Ridge logistic regression
Linear hard-margin SVM
Interlude: quick notes on constrained optimization
Back to hard-margin SVM
Soft-margin SVM
@ Large-margin classifiers
© Learning with kernels
@ Kernel methods
@ Positive definite kernels and RKHS

o Kernel examples
e Multiple Kernel Learning (MKL)

@ Conclusion
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@ Learning in high dimension
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General learning framework
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@ X' the space of patterns or data (typically, X = RP)
@ ) the space of response or labels

o Classification or pattern recognition : Y = {-1,1}
o Regression : Y =R

e Structured output: ) general
o S={(x1,%1),---,(Xn,yn)} a training set in (X x V)"
Output
@ A function f : X — ) to predict the output associated to any new
pattern x € X’ by f(x)
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Simple example 1 : ordinary least squares (O

(Hastie et al. The elements of statistical learning. Springer, 2001.)
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Simple example 2 : 1-nearest neighbor (1-NN)

(Hastie et al. The elements of statistical learning. Springer, 2001.)
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@ OLS: the linear separation is not appropriate = "large bias”

@ 1-NN: the classifier seems too unstable = "large variance”
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The fundamental " bias-variance” trade-off

@ Assume Y = f(X) + €, where € is some noise
@ From the training set S we estimate the predictor f

@ On a new point xp, we predict f(xo) but the "true” observation will
be Yo = f(xo0) + ¢

@ On average, we make an error of:
. 2
E.s (YO - f(xo))
. 2
=E.gs (f(xo) +€— f(x0)>
. 2
= B+ Es (f(x0) - (x0))
) . 2 . . 2
= £+ (f(x0) — Esf(x0)) + Es (F(x0) — Esf(x0))

= noise + bias® + variance
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Important message

Future prediction error = noise + bias® + variance
@ The "noise” part can not be avoided

@ By choosing a learning model, we should consider both "bias” and
"variance” if we want to make good predictions

@ Intuitively, a more realistic, more complex model with more
parameters to estimate has smaller bias but larger variance

e If variance dominates bias (eg, in high dimension), then having more
complex, more realist models can hurt performance

@ In other words, a wrong but simple model can work better than a
more realistic but more complex model

@ In many applications, domain experts (non-statisticians) often ignore
the cost of complexity and prefer complex models, which can lead to
disappointing results. You can help them!
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Back to OLS

@ Linear model with parameter S € R”:

P
Vx €RP, f3(x)=pF"x (— Zﬁiﬁ)
i=1

o Estimate BOLS from training data to minimize the mean sum of
squares (MSE):

MSE(8) = %Z (vi — fa(x1))?

i=1
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Back to OLS (cont.)

@ Let's use matrix notations:
o Y =(y1,---,¥n)| €R" the vector of outcomes
o X =(x1,...,%,) " €R"™P the matrix (n rows=samples, p
columns=features)

@ We can rewrite MSE as
MSE(8) = (¥ = X8) (¥ — X5)

e MSE(/) is a quadratic convex function; we minimize it by setting its
gradient to O:

2
VsMSE(B) = ;XT(Xﬁ —-Y)=0
o IfF XX is non-singular, the minimum is reached at

A -1
BOLS — argmin MSE(S) = (xTx) xTy
B
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Optimality of OLS

Gauss-Markov theorem

o Assume Y = Xj3* + ¢, where Ee =0 and Eee' = o2/.

@ Then the least squares estimator BOLS is BLUE (best linear unbiased
estimator), i.e., for any other estimator ﬂ CY with EB 6%,

Var(5°°) < Var(f)
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Optimality of OLS

Gauss-Markov theorem

o Assume Y = Xj3* + ¢, where Ee =0 and Eee' = o2/.

@ Then the least squares estimator BOLS is BLUE (best linear unbiased
estimator), i.e., for any other estimator ﬂ CY with EB 6%,

Var(5°°) < Var(f)

o If we want bias=0, then OLS is the best linear model
@ However, the variance error may be large (e.g., in high dimension)

@ In that case, we may have smaller total risk by increasing bias and
decreasing variance
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The curse of dimensionality
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@ In high dimensions, variance dominates, even for simple linear
estimators.

@ BLUE estimators are therefore useless.
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A solution: shrinkage estimators

@ Define a large family of "candidate classifiers”, e.g., linear predictors:

fs(x) = B'x for x € RP

y
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A solution: shrinkage estimators

@ Define a large family of "candidate classifiers”, e.g., linear predictors:

fs(x) = B'x for x € RP

@ For any candidate classifier f3, quantify how "good" it is on the
training set with some empirical risk, e.g.:
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A solution: shrinkage estimators

@ Define a large family of "candidate classifiers”, e.g., linear predictors:

fs(x) = B'x for x € RP

@ For any candidate classifier f3, quantify how "good" it is on the
training set with some empirical risk, e.g.:

© Choose [ that achieves the minimium empirical risk, subject to some
constraint:
mﬁin R(8) subjectto Q(B) < C,

for some penalty function 2 : RP — R™ and C > 0.

4
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Why skrinkage classifiers?

mBin R(B) subjectto Q(B)<C.

b*
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Why skrinkage classifiers?

mBin R(8) subjectto Q(B)<C.

est est
b b,

Bias _...--®

"Increases bias and decreases variance”
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Choice of €2 can decrease the bias

mBin R(B) subjectto Q(B)<C.

est
b

b*
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Choice of €2 can decrease the bias

mBin R(B) subjectto Q(B)<C.

est
b
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Equivalent formulation

mﬁin R(8) subjectto Q(B)<C

is equivalent to
min R(5) + Q(9)

@ There exists a (not necessarily unique) correspondance between C
and A such that the solutions to both problems are the same.

o If C increase, A decreases
@ The formulation with X is often preferred to implement the algorithm

@ Proof: using Lagrangian duality (only true under some assumptions,
eg, R and Q convex + Slater conditions, see later)
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Choice of C or A\

@ Choose a grid of values A for A (or C)
@ For each A € A (or C) estimate the best model

B e arggnin R(B) + AQ(p)

@ Select BA = BA;\ to minimize the bias-variance tradeoff.

High Bias Low Bias
Low Variance High Variance

Test Sample

Prediction Error

Training Sample

Low High
Model Complexity
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Cross-validation

A simple and systematic procedure to estimate the risk (and to optimize
the model's parameters)
@ Randomly divide the training set (of size n) into K (almost) equal
portions, each of size K/n
@ For each portion, fit the model with different parameters on the
K — 1 other groups and test its performance on the left-out group
© Average performance over the K groups, and take the parameter with
the smallest average performance.
Taking K =5 or 10 is recommended as a good default choice.
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©@ Many problems in modern machine learning involve models with
many parameters (i.e., high dimension)

@ The total prediction error of a learning system is the sum of a bias
and a variance error

In high dimension, the variance term often dominates

Shrinkage methods allow us to control the bias/variance trade-off

© 00

The choice of the penalty is where we can put prior knowledge to
decrease bias

@ The parameter to control the bias-variance trade-off (C or A) is
typically chosen by cross-validation, to minimize the test error.
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@ Learning with /5 regularization
@ Ridge regression
Ridge logistic regression
Linear hard-margin SVM
Interlude: quick notes on constrained optimization
Back to hard-margin SVM
Soft-margin SVM
Large-margin classifiers
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Overview

@ We focus on a simple penalty function: the squared Euclidean norm

Qs) = 151 (: 575 = Zﬂ?)

i=1

@ This will allow us to derive many state-of-the-art linear methods:
e Ridge regression
o Ridge logistic regression
e SVM and large-margin classifiers
@ This will allow us to extend these linear methods to nonlinear models,
using kernels
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@ Learning in high dimension

@ Learning with /5 regularization
@ Ridge regression

© Learning with kernels

@ Conclusion
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Ridge regression (Hoerl and Kennard, 1970)

@ Consider the set of linear predictors:

VBERP, f3(x)=p8"x forxcRP.
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Ridge regression (Hoerl and Kennard, 1970)

© Consider the set of linear predictors:

VBERP, f3(x)=p8"x forxcRP.

@ Consider the MSE as empirical risk:
1o )
R(B) = - Z(fg(x,-) —Yyi).

i=1
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Ridge regression (Hoerl and Kennard, 1970)

© Consider the set of linear predictors:

VBERP, f3(x)=p8"x forxcRP.

@ Consider the MSE as empirical risk:
1o )
R(B) = - Z(fg(x,-) —Yyi).

i=1

© Consider the squared Euclidean norm as a penalty:

QB) =118
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@ The penalized risk can be written in matrix form:
1< 2 &
R(B)+XQ(B) = — > (f3(x) —x)" +AD_ B
i=1 i=1

= %(Y—XB)T(Y—X5)+>\/J’T5-
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@ The penalized risk can be written in matrix form:

n

R(B)+X(8) = = 3 (s () = x)2 + A 42
i=1 i=1

= %(Y—XB)T(Y—X5)+>\/J’T5-

@ Unique minimizer (by setting the gradient to 0):

. -1
Aridge . o T T
35 = arg min {R(8) +XQ(5)} = (X X+ Anl) xTy.
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Limit cases

e = (XTX + )ml)il xTy

@ As A — 0, B;\idge — 3OS (low bias, high variance).

o As \ — 400, 3798 — 0 (high bias, low variance).
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Ridge regression example

500

beta

-500

(From Hastie et al.,

0.0 041 1.0 10.0

2001)
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Ridge regression with correlated features

Ridge regression is particularly useful in the presence of correlated features:

> library(MASS) # for the lm.ridge command
> x1 <- rnorm(20)
> x2 <- rnorm(20,mean=x1,sd=.01)
> y <~ rnorm(20,mean=3+x1+x2)
> Im(y~x1+x2) $coef
(Intercept) x1 x2
3.070699  25.797872 -23.748019
> lm.ridge(y~x1+x2,lambda=1)
x1 x2
3.066027 1.015862 0.956560
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Generalization: /»-regularized learning

@ A general />-penalized estimator is of the form

min {RB)+AIBIP} (1)

where

R(B ZE fﬁ XI) }/l

for some general loss functions /.
@ Ridge regression corresponds to the particular loss

Uu,y) = (u—y)*.

e For general, convex losses, the problem (1) is strictly convex and has
a unique global minimum, which can usually be found by numerical

algorithms for convex optimization.
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Losses for reg ression

o Square loss : £(u,y) = (u—y)?
o e-insensitive loss : ((u,y) = (|u—y|— ),

@ Huber loss : mixed quadratic/linear

4 —square
—e¢—insensitive
—Huber

3

2

’..‘,\
"'" ';.;11'7'” SN

g ,"”, IIII‘\\\\\\\\\\
’%y"lll’l’l’%’, AN

0si,
Rt

y—f(x)
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@ Learning in high dimension
@ Learning with /5 regularization

o Ridge logistic regression

© Learning with kernels

@ Conclusion
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Binary classification

o X = RP set of inputs

e YV ={-1,1} binary outputs

o S={(x1,%1),---,(Xn,yn)} a training set in (X x V)"

@ Goal: Estimate a function f : X — R to predict y by sign(f(x))
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The 0/1 loss

@ The 0/1 loss measures if a prediction is correct or not:

0 if y =sign(f(x))
1 otherwise.

loy1 (F(x),y)) = 1(¥f(x) <0) = {

o It is them tempting to learn f3(x) = 3" x by solving:

= o (f3 (i), yi NG
5”;]'15,”20/1 5 (xi),yi)+ AlBI

regularization

misclassification rate

@ However:
e The problem is non-smooth, and typically NP-hard to solve
e The regularization has no effect since the 0/1 loss is invariant by
scaling of 3
o In fact, no function achieves the minimum when A\ > 0 (why?)
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The logistic loss

@ An alternative is to define a probabilistic model of y parametrized by
f(x), eg.:
1

vy e {-11}, py|f(x)= 15 erf) o (yf(x))

= sigma(u)

| sigma(-u)

00 02 04 06 08 10

I I I
-5 0 5

@ The logistic loss is the negative conditional likelihood:

Ciogistic (F(x),y) = —Inp(y|f(x)) =In (1 + e—yf(X)>
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Ridge logistic regression

(Le Cessie and van Houwelingen, 1992)

min J( In (1 + e ViP X’) + \||B12

min J(8) = Z 181

@ Can be interpreted as a regularized conditional maximum likelihood
estimator

@ No explicit solution, but smooth convex optimization problem that
can be solved numerically
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Solving ridge logistic regression

1 < T
. _ viB ' x; 2
mb!nJ(ﬁ)——n ;lln (1+e >+A||ﬁ||

No explicit solution, but convex problem with:

1< YiXi
Vpd(B) ===  —— +2)8
n Py 1+ e}’/ﬁ i

1 n
= D vill = Polyi | xi)] xi + 28
i=1

1 T ayiBT X
VAU =Y S o
n —1 (]_ —+ e}’iﬁ Xi)

1 n
== Pa(L]x) (1= Pa(L]x)) xix" +2)I
i=1
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Solving ridge logistic regression (cont.)

1« T
; —— —YiB ' Xi 2
mb!n J(5) - ;1 In (1+e ) + A8

@ The solution can then be found by Newton-Raphson iterations:
-1
grew . gold _ [V%J <Bold>} VsJ (/Bold> _

@ Each step is equivalent to solving a weighted ridge regression problem
(left as exercise)

@ This method is therefore called iteratively reweighted least squares
(IRLS).
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@ Learning in high dimension
@ Learning with /5 regularization

@ Linear hard-margin SVM
© Learning with kernels

@ Conclusion
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Linear classifier
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Linear classifier
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Linear classifier
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Linear classifier
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Which one is better?
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The margin of a linear classifier
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The margin of a linear classifier
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The margin of a linear classifier
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The margin of a linear classifier
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The margin of a linear classifier
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Largest margin classifier (hard-margin SVM)

47 /240



Support vectors

48 /240



More formally

@ The training set is a finite set of n data/class pairs:

S = {(X1,y1), e -7(X”7yn)} ’

where x; € RP and y; € {—1,1}.
@ We assume (for the moment) that the data are linearly separable, i.e.,
that there exists (w, b) € RP x R such that:

wlx;+b>0 ifyi=1,
wixi+b<0 ify;=—1.
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How to find the largest separating hyperplane?

For a given linear classifier f(x) = w' x + b consider the "tube" defined by
the values —1 and +1 of the decision function:

X+b=0
W.X : \A
\\ w.X+b > +1
\
\\ [ ]
o
O
w.x+b < -1 °
o ©O
w.X+b=+1
\ \\/
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The margin is 2/|| w ||

Indeed, the points x; and x» satisfy:

wixg+b=0,
wixo+b=1.
By subtracting we get
T 1 —
wi(e—xi)=1=[w| x|x—x],

and therefore: )
T=2e—xil2=5—7.
[ wl
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All training points should be on the correct side of the

dotted line

For positive examples (y; = 1) this means:
WTX,' +b>1.
For negative examples (y; = —1) this means:
WTX,' +b< 1.
Both cases are summarized by:

Vi=1,...,n, y,'(WTX,'er)Z]..
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Finding the optimal hyperplane

Find (w, b) which minimize:

lw

under the constraints:

Vi=1,....n, y,-(WTX,'qu)—le.

This is a classical quadratic program on RP*L,
53 /240



Another view of hard-margin SVM

n
. / B . ( T, b, ) A 2 ,
TVJE {Z hard—margin | W Xi + D, i + ” w ”

i=1

for the hard-margin loss function:

0 if yu>1,

Chard— in(u,y) =
hard margm( ) {—i—oo otherwise.

54 /240



@ Learning in high dimension
@ Learning with /5 regularization

@ Interlude: quick notes on constrained optimization

© Learning with kernels

@ Conclusion
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Optimization problems

@ We consider an equality and inequality constrained optimization
problem over a variable x € X:

minimize f(x)
subject to  hi(x)=0, i=1,....,m,
g(x)<o0, j=1,...,r,

making no assumption of f, g and h.

@ Let us denote by f* the optimal value of the decision function under
the constraints, i.e., f* = f (x*) if the minimum is reached at a global
minimum x*.

v
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Lagrangian and dual function

The Lagrangian of this problem is the function L : X x R™ x R" — R
defined by:

L(x, A ) = F(x -I-ZAh )+ D g

.
Il
—
X
~
\

Lagrangian dual function
The Lagrange dual function g : R™ x R" — R is:

q(A, 1) = inf L(x, A, p)
xeX

= inf, (f(x)JrZ)\,-h,- (x)+zujgj(x)) .
i=1 j=1
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Properties of the dual function

@ ¢ is concave in (A, u), even if the original problem is not convex.

@ The dual function yields lower bounds on the optimal value f* of the
original problem when g is nonnegative:

gAp) <, YAeR"VueR, p>0.
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@ For each x, the function (A, 1) — L(x, A, ) is linear, and therefore
both convex and concave in (A, p). The pointwise minimum of
concave functions is concave, therefore g is concave.

@ Let X be any feasible point, i.e., h(x) =0 and g(x) < 0. Then we
have, for any A and p > O:

Do Xihi(x)+ > migi(x) <0,
i=1 i=1

= L(x,\p)=f(x +Z)\h —f-z,u,g, ) < f(X),

= g\ p) =infL(x, A\, p) < L(x, A\ p) <f(x), Vx. O
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Dual problem

For the (primal) problem:

minimize f(x)
subject to h(x) =0, g(x)<0,

the Lagrange dual problem is:

maximize q(\, p)
subjectto w© >0,

where g is the (concave) Lagrange dual function and A and p are the
Lagrange multipliers associated to the constraints h(x) = 0 and g(x) < 0.
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Weak duality

o Let d* the optimal value of the Lagrange dual problem. Each g(\, u)
is an lower bound for f* and by definition d* is the best lower bound
that is obtained. The following weak duality inequality therefore

always hold:
dr<f*.

@ This inequality holds when d* or f* are infinite. The difference
d* — * is called the optimal duality gap of the original problem.
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Strong duality

We say that strong duality holds if the optimal duality gap is zero,
i.e.

d* = f*.

If strong duality holds, then the best lower bound that can be
obtained from the Lagrange dual function is tight

Strong duality does not hold for general nonlinear problems.

It usually holds for convex problems.

Conditions that ensure strong duality for convex problems are called
constraint qualification.
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Slater's constraint qualification

Strong duality holds for a convex problem:

minimize f(x)
subject to  gj(x) <0, j=1,...,r,
Ax = b,

if it is strictly feasible, i.e., there exists at least one feasible point that
satisfies:
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@ Slater’s conditions also ensure that the maximum d* (if > —o0) is
attained, i.e., there exists a point (\*, u*) with

@ They can be sharpened. For example, strict feasibility is not required
for affine constraints.

@ There exist many other types of constraint qualifications
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Dual optimal pairs

Suppose that strong duality holds, x* is primal optimal, (\*, u*) is dual
optimal. Then we have:

f(x*) = q (A", %)

x€ER

= inf {0+ Y N+ Y uigix)
i=1 j=1

< F(X) + D AThi(x) + > pigi(x?)
i=1 j=1

< f(x7)

Hence both inequalities are in fact equalities.
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Complimentary slackness

The first equality shows that:
O, X%, w7) = inf L A% 0%)

showing that x* minimizes the Lagrangian at (\*, u*). The second
equality shows that:

pigi(x*)=0, j=1,...,r.

This property is called complementary slackness:
the ith optimal Lagrange multiplier is zero unless the ith constraint is
active at the optimum.
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@ Learning in high dimension
@ Learning with /5 regularization

@ Back to hard-margin SVM

© Learning with kernels

@ Conclusion
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In order to minimize:
EII w?
2

under the constraints:

Vi=1,...,n, y,'(WTX,'-i-b)—].ZO,

we introduce one dual variable «; for each constraint, i.e., for each
training point. The Lagrangian is:

n

L(w,b,a) = %HWH? - (y,- (WTX,- + b) - 1) .

i=1
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e L(w,b,«) is convex quadratic in w. It is minimize for:

n n
Vwl=w— Zai}/ixi =0 = w= Zaiyixi-
i=1 i=1

o L(w,b,«a) is affine in b. Its minimum is —oo except if:

VbL:Za,-y;:O.

i=1
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Dual function

@ We therefore obtain the Lagrange dual function:

= inf L b
q(a) ety cn (w, b, )
_ D1 — % > er']:l viyjeiagxix; if 35 iy =0,
—00 otherwise.

@ The dual problem is:

maximize ¢ («)

subjectto « >0.
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Dual problem

Find o € R™ which maximizes

n

n n
L(a) = Za; - % Z Zaiaj}/iiji—r)gv
i=1

i=1 j=1
under the (simple) constraints o; > 0 (for i =1,...,n), and

n

Z QY = 0.

i=1

This is a quadratic program on RN, with "box constraints”. o* can be
found efficiently using dedicated optimization softwares.
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Complementary slackness conditions

@ At the optimal, the complementary slackness conditions must hold:
Vi=1,...,n aj (y,- (W*TXi+b*> —1) =0.
@ This implies that:

° Ifaj-“>0theny(w X,+b*):1
o If y; (w*Tx;+ b*) > 1thenaf =0
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Interpretation: support vectors
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Recovering the optimal hyperplane

@ Once a* is found, we recover w* by:
w* = argmin L(w, b, o E Q;jYiX;
w

@ To recover b we can not just minimize L(w, b, a*), since it does not
depend on b. Instead, we use the complementary slackness condition:
if i is such that a; > 0, then

yi (W x; + b*) — b=y —w'x
@ The decision function is therefore:
F*(x) = w* T x + b*

n
= Zoz,-y,-x,-—rx + b*.
i=1
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Primal (for large n) vs dual (for large p) optimization

@ Find (w, b) € RP™! which minimize:

under the constraints:
Vi=1,....n, y (WTX,+b) ~1>0.

@ Find o* € R"” which maximizes

L(a) = Za,—fZZany,ny,xJ,

i=1 j=1

under the (simple) constraints a; > 0 (for i = 1,...,n), and

n
Z ajyi = 0.
i—1
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@ Learning with /5 regularization

@ Soft-margin SVM

© Learning with kernels
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What if data are not linearly separable?
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What if data are not linearly separable?
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Soft-margin SVM

o Find a trade-off between large margin and few errors.

@ Mathematically:

) 1
min {n‘)arg’[n(f) —+ C X errors(f)}

f

o C is a parameter
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Soft-margin SVM formulation

@ The margin of a labeled point (x, y) is

margin(x,y) =y (WTX + b)

@ The error is

o 0if margin(x,y) > 1,

o 1 — margin(x,y) otherwise.
@ The soft margin SVM solves:

wlg {;|W||2+ Cémax (0,1 — i (WTX;er))}
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Soft-margin SVM and hinge loss

10
ijg{ngl hinge | W Xi+ b,y |+ HWH )
=

for A = 1/2nC and the hinge loss function:

0 if yu>1,

1 —yu otherwise.

\ 1(f(x),y)
° \ yE(x)

1

Ehinge(uay) - max(l - yu, 0) - {

80 /240



Reformulation as a QP

1(f(x),y)

yi(x)

@ Note that for any u € R,

§=>0

inge =mi h that
Phinge(U) Ene'ﬁf such tha {521_11

@ Therefore SVM solves the QP

A A . . & >0
- + C i, st Vielln],
vr;;,;pg{zuwn Zﬁ} s.t. Vi € [L,n] {g,zl—y;(mx,-+b>
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Form the Lagrangian:

n

L(w,b, & a,y) = %Hw]|2+ CZ&;—Za; <y;xfTW+€f—1) —yTe

i=1 i=1

Minimize in the primal variables (w, b, £):

n n
Vuwl = W—Za,-y,-x,- — W:Za;y,-x,-
i=1 i=1

Vgl=C—-aj—yvi = «aj+t7=C
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Dual formulation

21@?12{)2 E a,—fE E aajy,ijxj

i=1 j=1

under the constraints:

0<a;<C, fori=1,...,n
E?:lai)/izo-

Remark: we recover hard-margin SVM with C = 400
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Interpretation: bounded and unbounded support vectors
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@ Learning in high dimension
@ Learning with /5 regularization

@ Large-margin classifiers

© Learning with kernels

@ Conclusion
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Loss functions for classifications

We already saw 3 loss functions for binary classification problems
@ The 0/1 loss £y/1 (f(x),y) = 1(yf(x) <0)
o The logistic l0ss £jogistic (f(x),y) = In (1 + e™¥ )
@ The hinge loss £pjnge (f(x),y) = max(0,1 — yf(x))

Definition

In binary classification () = {—1,1}), the margin of the function f for a
pair (x,y) is:
yf (x).

In all cases the loss is a decreasing function of the margin, i.e.,
(f(x),y) =@ (yf(x)), with¢non-increasing

What about other similar loss functions?
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Loss function examples

5
— 0-1
4 — hinge
square
3 —— logistic
2
1

%S % 4 o0 1 2 3 a

Method o(u)
Logistic regression log (1 +e™")
Support vector machine (1-SVM) | max (1 — u,0)
Support vector machine (2-SVM) | max (1 — u, 0)?
Boosting e !
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Large-margin classifiers

Given a non-increasing function ¢ : R — R, a large-margin linear
classifier is an algorithm that estimates a function fz(x) = BT x by solving

1
mﬁln; g @(Yifﬁ(xi))+/\’|ﬁ“5
i=1

Hence, ridge logistic regression and SVM are large-margin classifier,
corresponding to ¢(u) =In(1+ e ") and ¢(u) = max(0,1 — u),
respectively. Many more are possible.

Questions:
© Can we solve the optimization problem for other ¢'s?
@ Is it a good idea to optimize this objective function, if at the end of
the day we are interested in the {g/; loss, i.e., learning models that

make few errors?
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Solving large-margin classifiers

1O
min 3¢ (vifTx) + Al B3
i=1

@ When ¢ is convex, this is a stricly convex function of §

@ It can then be solved numerically by generic or specific algorithms for
convex optimization, e.g., Newton's or gradient method

@ When n is large, stochastic optimization is particularly useful (at each
step, only approximate the gradient with one or a batch of examples)
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A tiny bit of learning theory

Assumptions and notations

Let P be an (unknown) distribution on X x ), and
n(x) =P(Y = 1| X = x) a measurable version of the conditional
distribution of Y given X
Assume the training set S, = (X, Y,-),-:L__’n are i.i.d. random
variables according to P.
The risk of a classifier f : X — R is R(f) = P (sign(f(X)) # Y)
The Bayes risk is

R*= inf  R(f)

f measurable
which is attained for f*(x) = n(x) — 1/2
The empirical risk of a classifier f : X — R is

Zl sign(f(X;)) # Yi)
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@ Let the empirical ¢-risk be the empirical risk optimized by a
large-margin classifier:

RUF) = = 3" 0 (Vi (X))
i=1

@ It is the empirical version of the y-risk
Ro(f) = Elp (Yf (X))]

@ Can we hope to have a small risk R(f) if we focus instead on the
p-risk R,(f)?
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A small ¢-risk ensures a small 0/1 risk

Theorem (Bartlett et al., 2003)

Let ¢ : R — Ry be convex, non-increasing, differentiable at 0 with
¢'(0) < 0. Let f: X — R measurable such that

Ro(f)= min R,(g)=R;.
g measurable
Then
R(f)= min R(g)=R".
g measurable
Remarks:

@ This tells us that, if we know P, then minimizing the ¢-risk is a good
idea even if our focus is on the classification error.

@ The assumptions on ¢ can be relaxed; it works for the broader class
of classification-calibrated loss functions (Bartlett et al., 2003).

@ More generally, we can show that if R,(f) — R,; is small, then
R(f) — R* is small too (Bartlett et al., 2003).

92 /240




A small ¢-risk ensures a small 0/1 risk

Proof sketch:
Condition on X = x:

Ro(f | X =x) = E[p (YF (X)) [ X = x] = n(x)e (f(x)) + (1 = n(x)) ¢ (=f(x))
Ro(=F X =x) = E[p (=Y (X)) [ X = x] = n(x)e (=f(x)) + (1 = n(x)) ¢ (f(x))
Therefore:

Ro(f| X = x) = Rp(—=f | X = x) = [2n(x) = 1] x [¢ (f(x)) = ¢ (=F(x))]
This must be a.s. <0 because R,(f) < R,(—f), which implies:
o if n(x) >3, ¢ (f(x)) < p(~f(x)) = f(x)=0
o if (x) < 3. ¢(f(x)) = p(—f(x) = f(x)<0

These inequalities are in fact strict thanks to the assumptions we made on ¢ (left
as exercice). O
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Empirical risk minimization (ERM)

To find a function with a small (-risk, the following is a good candidate:

Definition

The ERM estimator on a functional class F is the solution (when it exists)
of:

f, = argmin RS(f).
feF
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Empirical risk minimization (ERM)

To find a function with a small (-risk, the following is a good candidate:

Definition

The ERM estimator on a functional class F is the solution (when it exists)
of:

fy, = argmin RS(f).
feF

Questions:
@ Is R}(f) a good estimate of the true risk Ry,(f)?

Q Is R,(f,) small?
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Class capacity

A

o The ERM principle gives a good solution if R, (f) is similar to the
minimum achievable risk infscx R ().
@ This can be ensured if F is not “too large".

@ We need a measure of the “capacity” of F.

| A\

Definition: Rademacher complexity
The Rademacher complexity of a class of functions F is:

2 n
n;U;f(X,-)

where the expectation is over (X;),_; , and the independent uniform
{*1}-valued (Rademacher) random variables (0i);_; -

Rad, (F) = Ex |sup

feF

)

\
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Basic learning bounds

Suppose ¢ is Lipschitz with constant L:
Vu,u' €R,  |p(u) — ()| < Ly |u—d|.

Then the ¢-risk of the ERM estimator satisfies (on average over the
sampling of training set)

Es,R, <f> ~ R} < 4L,Rad, (F) + inf Ry(f) — R;

~~

E - Estimation error
xcess (p-risk

Approximation error

This quantifies a trade-off between:

e F "large” = overfitting (approximation error small, estimation error
large)
e F "small" = underfitting (estimation error small, approximation error

large)
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ERM for bounded linear classifiers

Consider the set of linear functions f5(x) = 3" x where /3 is bounded:

Fe={fs : | Bll2<B}.

2B, /E| X |12
Rad, (Fg) < — YV~ 2

Vvn
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Rad, (Fg) =Ex, | sup
_fE]:B

n

2
;;a;f(x,-)

2 n
(9250}

2 n
=Ex,.o BHEZU,'XI' 2
L i1

:EXU sup
151<B

(linearity)

(Cauchy-Schwarz)

2B :
= —Ex, [ 1Y oiXi 3
i=1

n
<= | Exo | D oiopX X

ihj=1

(Jensen)
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But E, [oj0;] is 1 if i = j, O otherwise. Therefore:

2B n
Rad,, <= |E E, [ojo]] X:-T X;
ad, (Fg) < = xlz [io) XX

2B u
<- Ex Y [ Xi13
i=1

2B+\/Ex|| X |I3

- Vn
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Basic learning bounds in RKHS balls

Suppose || X || < k a.s. Then the ERM estimator in Fp satisfies

A «  8L,kB _ .
ER, (£) - Ry < St L.En;B R.(f) — Rw} .

Remarks
@ B controls the trade-off between approximation and estimation error

@ The bound on expression error is independent of P and decreases
with n

@ The approximation error is harder to analyze in general

@ In practice, B (or A, next slide) is tuned by cross-validation
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ERM as penalized risk minimization

o ERM over Fjg solves the constrained minimization problem:

{ming % Yo e (yvifs (xi))

subject to || B2 < B.

@ To make this practical we assume that ¢ is convex.

@ The problem is then a convex problem in 8 for which strong duality
holds. In particular 3 solves the problem if and only if it solves for
some dual parameter \ the unconstrained problem:

1
gg;}@{n;@()ﬁfﬁ (Xi))+>\||5||§} :
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Summary: large margin classifiers

5
— 0-1

4 — hinge

square
3 —— logistic
2
1
0

3 -2 -1 0 1 2 3 4

1 n
in< =) "o (yif (i) + M FI3
;neg{ni_lw(y (xi)) + All H?—L}

@ ¢ calibrated (e.g., decreasing, ©'(0) < 0) = good proxy for
classification error

@  convex + representer theorem = efficient algorithms
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Summary:

l>-regularized linear methods

—square

—e-insensitive|

—Huber

— 0-1

— hinge
square

—— logistic

0 1
y-f(x)

fa(x) =BT x, mﬁin {,17 > Ufs(xi), vi) + A\Iﬁll%}
i=1

@ Many popular methods for regression and classification are obtained
by changing the loss function: ridge regression, logistic regression,

@ Needs to solve numerically a convex optimization problem, well
adapted to large datasets (stochastic gradient...)
@ In practice, very similar performance between the different variants in




© Learning with kernels

Kernel methods

@ Positive definite kernels and RKHS
o Kernel examples

e Multiple Kernel Learning (MKL)
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o O
O
O O
o O
O
o O © o)
e} [ ]
° o O
O O
®) O
O O
O o ©
O

@ Sometimes linear models are not interesting...
@ Kernels will allow to solve nonlinear problems with linear methods!
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@ Learning in high dimension
@ Learning with /5 regularization

© Learning with kernels
@ Kernel methods

@ Conclusion
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"Linear” depends on the representation you choose

2
For x = ( il > let d(x) = ( ilz > The decision function is:
2

f(x) = x12 —|—X22 — R?= BTQD(X) +b

with 3= (1,1)T and b = —R?
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Kernel = inner product in the feature space

Definition

For a given mapping
X —H

from the space of data X’ to some feature space H, the kernel between
two objects x and x’ is the inner product of their images:

Vx,x' € X, K(x,x') = d(x)To(x).
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Example

2
Let ¥ = H =R2 andforx:<x1 > Iet¢(x):<x12>
X2 X2

Then the kernel is:

K(xx') = 0(x) T 0(x) = (x1)%(x1)* + (x)* () -
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The kernel tricks

2 tricks

@ Many linear algorithms (in particular ¢>-regularized methods) can be
performed in the feature space of ®(x) without explicitly computing
the images ®(x), but instead by computing kernels K(x, x’).

@ It is sometimes possible to easily compute kernels which correspond
to complex large-dimensional feature spaces: K(x, x’) is often much
simpler to compute than ®(x) and ®(x’)
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Trick 1 illustration: SVM in the original space

@ Train the SVM by maximizing
gggza' SED ) S
i=1 j=1
under the constraints:

0<a;<C, fori=1,...,n
27:1%}420-

@ Predict with the decision function

f(x)= Za,—y,-x,-Tx +b*.
i=1
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Trick 1 illustration: SVM in the feature space

@ Train the SVM by maximizing

LQ?R%]ZQ,—fZZany,yJ X, q’(Xj):
i=1 j=1

under the constraints:

0<a;<C, fori=1,...,n
27:1%}420-

@ Predict with the decision function

=3 iy ()" (x) + b7
i=1
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Trick 1 illustration: SVM in the feature space with a kernel

@ Train the SVM by maximizing
ggg,zaf 2D ) IR
i=1 j=1
under the constraints:

0<a;<C, fori=1,...,n
27:1%}420-

@ Predict with the decision function

ZaK (xi, x) + b*.
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Trick 2 illustration: polynomial kernel

For x = (x1,x0) " € R?, let ®(x) = (x2,V2x1x0, x5) € R3:

2
K(x,x") = xZx[? 4 2x1x0x, xb 4+ X35

( X1 + X2X2)

(7<)
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Trick 2 illustration: polynomial kernel

x1 x12
o P o o
o o9 o
o o
o O i
(@] o000 @]
e © o @] X2 o) Oo
o i o oo
°
Re| o o oo © 000 x2?
o) o
o) O
o o

More generally, for x, x’ € RP,
T d
K(x,x') = <X x' + 1)

is an inner product in a feature space of all monomials of degree up to d
(left as exercice.)
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Combining tricks: learn a polynomial discrimination rule

with SVM

@ Train the SVM by maximizing

n n n
1 T d
max 5 1 ai— 3 5 E Qi yiy; (X,- xj + 1) ;
1=

i=1 j=1

under the constraints:

27:1 aiyi =0.

@ Predict with the decision function

{Oga,-SC, fori=1,...,n

f(x)= ia,-y,— <X,-Tx+1>d+b*.
i=1
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lllustration: toy nonlinear problem

> plot(x,col=ifelse(y>0,1,2),pch=ifelse(y>0,1,2))

Training data
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@ 7 A AR A > °
Aa W2 e
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~
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o
X
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N
a8 N
NS
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o - AAAA A A
Loah
a
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-
I
IN
T T T T T
-1 0 1 2 3

x1
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lllustration: toy nonlinear problem, linear SVM

> library(kernlab)
> svp <- ksvm(x,y,type="C-svc",kernel="vanilladot’)
> plot(svp,data=x)

SVM classification plot
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lllustration: toy nonlinear problem, polynomial SVM

> svp <- ksvm(x,y,type="C-svc",
kernel=polydot (degree=2))
> plot(svp,data=x)

SVM classification plot
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More generally: trick 1 for ¢,-regularized linear models

Representer theorem

Let f3(x) = BT ®(x). Then any solution 5 of

RN
mﬁln; E U(f3(xi), vi) + AlBII5
i=1

can be expanded as
n
= Z aiK(x;i, x)
i=1

where oo € R” is a solution of:

052]'15";26 Zaj Xan) Yi +)\Zaaj XHXj .

ij=1

v
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Representer theorem: proof

@ For any 8 € RP, decompose 8 = s + 51 where
Bs € span(®(x1),...,P(x,)) and 5, is orthogonal to it.

@ On any point x; of the training set, we have:

f3(xi) = BT P(x;) = B (xi) + B] P(x;) = B D) = fa5(%) -

o On the other hand, we have || 82 = || Bs |3+ | 8. 13 > I s 12
with strict inequality if 5, # 0.

o Consequently, Bs is always as good as 3 in terms of objective
function, and strictly better if 5, # 0. This implies that at any
minimum, 3, = 0 and therefore § = Bs = > _I_; ;®(x;) for some
a € R

@ We then just replace S by this expression in the objective function,
noting that

1813 = | Za (x)[13 = Z ajaj®(x) () = > aioiK(xi, X)) -

ij=1 ij=1
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Example: kernel ridge regression

o Let & : X — RP be a feature mapping from the space of data to a
Euclidean or Hilbert space.

o Let f5(x) = BT ®(x) and K the corresponding kernel.

@ By the representer theorem, any solution of:

n

~ o1
f= argfmln; Z (yi — fs (Xi))2 + Al B ”%
B =1

can be expanded as:

3
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Example: kernel ridge regression

Let Y = (y1,... ,y,,)T € R" the vector of response variables.
Let o = (v, . .. ,04,,)T € R" the unknown coefficients.
Let K be the n x n Gram matrix: Kij = K (x;, X;) -

We can then write in matrix form:

(f(xl),...,F(xn))T — Ka,

@ Moreover,

n n
1815 = ZZ%%’K(X;,XJ') =o' Ka.

i=1 j=1
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Example: kernel ridge regression

@ The problem is therefore equivalent to:

1
argmin= (Ka — Y)" (Ka—Y)+ X Ka.
ackr N

@ This is a convex and differentiable function of . Its minimum can
therefore be found by setting the gradient in o to zero:

2
0= K (Ka—Y)+2\Ka
=K[(K+Anl)a—Y]

@ For A > 0, K + Anl is invertible (because K is positive semidefinite)
so one solution is to take:

a=(K+xnl)ty.
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Example (KRR with Gaussian RBF kernel)
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Example (KRR with Gaussian RBF kernel)

lambda = 1000
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Example (KRR with Gaussian RBF kernel)

lambda = 100
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Example (KRR with Gaussian RBF kernel)

lambda = 10
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Example (KRR with Gaussian RBF kernel)

lambda =1
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Example (KRR with Gaussian RBF kernel)

lambda = 0.1
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Example (KRR with Gaussian RBF kernel)

lambda = 0.01
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Example (KRR with Gaussian RBF kernel)

lambda = 0.001
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Example (KRR with Gaussian RBF kernel)

lambda = 0.0001
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Example (KRR with Gaussian RBF kernel)

lambda = 0.00001
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Example (KRR with Gaussian RBF kernel)

lambda = 0.000001
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Example (KRR with Gaussian RBF kernel)

lambda = 0.0000001
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Remark: uniqueness of the solution

Let us find all a's that solve
KI(K+Anl)a—Y]]=0
@ K being a symmetric matrix, it can be diagonalized in an orthonormal
basis and Ker(K) L Im(K).
o In this basis we see that (K + Anl)™" leaves Im(K) and Ker(K)
invariant.
@ The problem is therefore equivalent to:
(K+Anl)a—Y € Ker(K)
sa— (K+ )Y e Ker(K)
sa=(K+Anl)1Y +e with Ke = 0.
@ However, if o/ = a + € with Ke = 0, then:
18=813=(a—a) K(a—a)=0,
therefore 3 = 3. KRR has a unique solution /3, which can possibly be

expressed by several a's if K is singular.
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Comparison with "standard” ridge regression

Let X the n x p data matrix, K = XX T the kernel Gram matrix.

@ In "standard” ridge regression, we have f(x) = BTx with
N -1
B= (XTX n n)\l> xTy .

@ In "kernel” ridge regression, we have f(x) = ST aix x = AT x with

n
~ -1
F=>apm=XTa=X" (xxT + Anl) Y.
i=1

Oups... which one is correct?
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Comparison with "standard” ridge regression

Matrix inversion lemma

For any matrices B and C, and «y > 0 the following holds (when it makes

sense):
B(CB+~I)"'=(BC+~"'B

We deduce that (of course...):

~ -1 -1 ~
B= (XTX n n)\l> XTy =xT (xxT n Anl) Y=3

. 2

pXp nxn

Computationally, inverting the matrix is the expensive part, which suggest
to implement:

e KRR when p > n (high dimension)
@ RR when p < n (many points)
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Generalization

@ We learn the function f(x) = Y1 ; a;K(xi, x) by solving in « the
following optimization problem, with adequate loss function ¢:

10 n n
in =S¢ Kio), i | 2 ST K (xi, %)
C';ghgnniz_; jz_;o{/ (XHXJ)?yI + I.’Jz_:lalaj (XI))<J)

@ No explicit solution, but convex optimization problem

o Note that the dimension of the problem is now n instead of p (useful
when n < p)
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The case of SVM

@ Soft-margin SVM with a kernel solves:

n n n
aeﬂ@i’geR Zlﬁhinge .ZlajK(Xiaxj)?yi + A Z ajoK(xi, x;)
= =

ij=1
o By Lagrange duality we saw that this is equivalent to

n
a
i=1 j=1

under the constraints:
0<;<C, fori=1,...,n
27:1 ajyi =0.

@ This is not a surprise, both problems are also dual to each other
(exercise).
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@ Learning in high dimension
@ Learning with /5 regularization

© Learning with kernels

@ Positive definite kernels and RKHS

@ Conclusion
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Remember: polynomial kernel

x12
O
0©%_.0
© i
° 5 oo ©
g x2 o° 0.0 ge!
o oo © D00 x22?
d
Vx, x' € RP Kx,xX)= (x"x' +1
) b bl

is an inner product in a feature space of all monomials of degree up to d
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Which functions K(x, x") are kernels?

Definition

A function K(x, x’) defined on a set X" is a kernel if and only if there
exists a features space (Hilbert space) H and a mapping

X —H,

such that, for any x,x’ in X:

K (x,x') =(®(x),® (X/)>,H .
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@ An inner product on an R-vector space H is a mapping
(f,g) — (f,g)4y from H? to R that is bilinear, symmetric and such
that (f,f) > 0 for all f € H\{0}.

@ A vector space endowed with an inner product is called pre-Hilbert. It
is endowed with a norm defined by the inner product as

1
1l = {F. )3,

@ A Hilbert space is a pre-Hilbert space complete for the norm defined
by the inner product.
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Kernel examples

@ Polynomial (on R9):
K(x,x') = (x.x' 4+ 1)?

@ Gaussian radial basis function (RBF) (on R9)

12
K(x,x') = exp <_||XX||>

202
@ Laplace kernel (on R)
K(X,X') = exp (f*y|x — x'|)
e Min kernel (on Ry)

K(x,x") = min(x, x")
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Example: SVM with a Gaussian kernel

@ Training:

@ Prediction
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Example: SVM with a Gaussian kernel

Z < HX—X:H )
o exp 2o

SVM classification plot

1.0

— 0.5

— 0.0

— —0.5

1
|y
o
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Positive Definite (p.d.) functions

Definition

A positive definite (p.d.) function on the set X is a function
K : X x X — R symmetric:

V(X,X/) eXx?’ K (x,x’) =K (x’ x),

)

and which satisfies, for all N € N, (x1,x2,...,xy) € XN et
(31,32,...,3/\/) e RN:

ZZaaj (xi,x;) > 0.

i=1 j=1
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Kernels are p.d. functions

Theorem (Aronszajn, 1950)

K is a kernel if and only if it is a positive definite function.
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Proof: kernel = p.d. (easy)

Let
K (x,x')=(®(x),® (x’)>H
be a kernel. It is p.d. because:
o K(x,x') = (®(x),®(X))y = (®(X), P (x))g = K(x',x) ,
o Sy oMy aia (@ (x), @ () = || oMy 2 () 13,2 0
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Proof: p.d. = kernel when X is finite

@ Suppose X = {xy,x2,...,xn} is finite of size N.

@ Any p.d. kernel K : X x X — R is entirely defined by the N x N
symmetric positive semidefinite matrix [K]; := K (x;, x;).

@ It can therefore be diagonalized on an orthonormal basis of

eigenvectors (u1, uo, ..., uy), with non-negative eigenvalues
OS)\I S...S)\N, i.e.,

N N
K (xi, xj) = [Z )\/U/U/T] = Nu(u(i) = (@ (), D ()
=1 =1

i

with
VAzui(i)
0] (X,') = . . O

\/WIUN(")
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Proof: p.d. = kernel in the general case

@ Mercer (1909) for X = [a, b] C R (more generally X compact) and K
continuous (the so-called Mercer kernels).

e Kolmogorov (1941) for X' countable.

e Aronszajn (1944, 1950) for the general case, using the theory of
RKHS.
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RKHS

Definition

Let X be a set and H C R¥ be a class of functions forming a (real)
Hilbert space with inner product (.,.),,. The function K : X2 Ris
called a reproducing kernel (r.k.) of H if

© 7 contains all functions of the form

Vxe X, Ki:t— K(x,t).

@ For every x € X and f € H the reproducing property holds:

f(x)=(f,Kx)y -

If a r.k. exists, then H is called a reproducing kernel Hilbert space (RKHS).

v
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An equivalent definition of RKHS

The Hilbert space # C R? is a RKHS if and only if for any x € X, the
mapping:

F: H —-R
f = f(x)

is continuous.
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An equivalent definition of RKHS

The Hilbert space # C R? is a RKHS if and only if for any x € X, the
mapping:

F: H —-R
f = f(x)

is continuous.

Convergence in a RKHS implies pointwise convergence, i.e., if (f,)
converges to f in H, then (£, (x)),cx converges to f (x) for any x € &'

neN
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If H is a RKHS then f — f (x) is continuous
If a r.k. K exists, then for any (x,f) € X x H:

| ()| = {f, K)y |
< I f I3l Kx |l3 (Cauchy-Schwarz)

< F K (6, %),

because || K [|2, = (Kx, Kx)3; = K (x,x). Therefore f € H — f (x) € R is
a continuous linear mapping. [

v
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Proof (Converse)

If f+— f(x) is continuous then H is a RKHS

Conversely, let us assume that for any x € X the linear form

f € H — f(x) is continuous.

Then by Riesz representation theorem there (general property of Hilbert
spaces) there exists a unique gx € H such that:

fF(x) = (f, gy

The function K (x,y) = g« (y) is then a r.k. for H. O
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Unicity of r.k. and RKHS

o If H is a RKHS, then it has a unique r.k.
@ Conversely, a function K can be the r.k. of at most one RKHS.
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Unicity of r.k. and RKHS

o If H is a RKHS, then it has a unique r.k.
@ Conversely, a function K can be the r.k. of at most one RKHS.

v
Consequence

This shows that we can talk of "the” kernel of a RKHS, or "the” RKHS of
a kernel.

v
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Proof

If a r.k. exists then it is unique

Let K and K’ be two r.k. of a RKHS #H. Then for any x € X:

” Kx — K>/< Hg-{ = <KX - K>/<a Kx — K>I<>7-L
= (Kx — K Ki)gy — (K — Ko, K)oy
= K (x) = K5 (x) — Kx (x) + K (x)
=0.

This shows that K = K, as functions, i.e., Ki(y) = K(y) for any y € X.
In other words, K=K". [

v
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If a r.k. exists then it is unique
Let K and K’ be two r.k. of a RKHS #H. Then for any x € X:

” Kx — K>/< Hg-{ = <KX - K>/<a Kx — K>I<>7-L

= (Kx — K Ki)gy — (K — Ko, K)oy
= Kx (x) — K (x) = Kx (x) + K (x)
=0.

This shows that K = K, as functions, i.e., Ki(y) = K(y) for any y € X.
In other words, K=K". [

The RKHS of a r.k. K is unique

Left as exercice.
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An important result

A function K : X x X — R is p.d. if and only if it is a r.k.
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Proof: rk. = p.d.

@ A rk. is symmetric because, for any (x,y) € &2

K (x,y) = (Kx; Ky )y = (Ky Ky = Ky, %)

@ ltis p.d. because for any N € N,(x1,x2,...,xy) € XV, and
(31,32,...,31\/) GRN:

N N
Z ajaiK (xi, xj) = Z ajaj (Ky;, Kxj

ij=1 J=1

N
Zalel ||7-£
=1

>0. O
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Proof: p.d. = r.k. (1/4)

o Let Hg be the vector subspace of RY spanned by the functions
{KX}XEX'
e For any f, g € Ho, given by:

F=Y akKg, g=)Y bk,
i=1 j=1

let:
(f &)y, = E aibi K (xi, y;) -
iy
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Proof: p.d. = r.k. (2/4)

o (f,g)y, does not depend on the expansion of f and g because:
m n
(F.&)a, = D 2ig (1) = D bif (1))
i=1 j=1

o This also shows that (.,.);, is a symmetric bilinear form.

@ This also shows that for any x € X and f € Hy:

(f, Kx)yy, = F(x) -

152 /240



Proof: p.d. = r.k. (3/4)

@ K is assumed to be p.d., therefore:
1713, = Z ajajK (xi, %) =2 0.
ij=1

In particular Cauchy-Schwarz is valid with (., .),, .
@ By Cauchy-Schwarz we deduce that Vx € X:

NI

O = [ Kidagy | < 11 F llae-K (x,%)2

therefore || f ||, =0 = f =0.

@ Hy is therefore a pre-Hilbert space endowed with the inner product

(s )24y
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Proof: p.d. = r.k. (4/4)

@ For any Cauchy sequence (f,)n>0 in (Ho, (-, .)3,), We note that:

Vmn) € X X N2 | fin (%) = £ ()| < | i — o 40K (x,)? .

Therefore for any x the sequence (f,(x)),~, is Cauchy in R and has
therefore a limit.

o If we add to Hg the functions defined as the pointwise limits of
Cauchy sequences, then the space becomes complete and is therefore
a Hilbert space, with K as r.k. (up to a few technicalities, left as
exercice). [
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Application: back to Aronszajn’s theorem

Theorem (Aronszajn, 1950)

K is a p.d. kernel on the set X if and only if there exists a Hilbert space
‘H and a mapping
S X —H,

such that, for any x,x’ in X:
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Proof of Aronzsajn’s theorem: p.d. = kernel

o If K is p.d. over a set X then it is the r.k. of a Hilbert space H C RY.
o Let the mapping ® : X — H defined by:

Vx e X, &(x)=Kk.
@ By the reproducing property we have:

V(x,y) €X27 <¢(X)7¢(y)>7-[: <KX7Ky>H: K(Xv)/)‘ 0
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RKHS of the linear kernel

o Let ¥ = R and K (x,y) = (x,y)ps be the linear kernel

@ The corresponding RKHS consists of functions:

d
x € RY— f(x E aj (Xiy X)pd = (W, X)pa ,

with w = Zi aiX;.
@ The RKHS is therefore the set of linear forms endowed with the
following inner product:
<f7g>7-[K = <W7 V>]Rd 9

when f (x) =w'x and g (x) = v'x.
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RKHS of the linear kernel (cont.)

Kiin (x,x") =xTx".
f(x) =w'x,
[RIE =[wla.

IFl=2 - 1Ifl=1 [IFlI=0.5
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(>-regularized methods in RKHS

() = 8T(x),  min {1 S ). vi) + A||ﬁ||%}

€RP
p i=1

is equivalent to
1 n
in < = " U(F(x),yi) + M FI3
;negg{ni_l (F0xi) yi) + Al HH}

where H is the RKHS of the kernel K(x,x') = ®(x) T ®(x).
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Smoothness functional

A simple inequality

@ By Cauchy-Schwarz we have, for any function f € H and any two
points x,x’ € X:

’f(x)—f(x’) ‘ = [ {f, Kx = Ka)yy |
<l X [ K = Kl
= || f”'H X dK (X,X/) 5
@ The norm of a function in the RKHS controls how fast the function

varies over X with respect to the geometry defined by the kernel
(Lipschitz with constant || f ||%).

Important message

Small norm = slow variations.
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Kernels and RKHS : Summary

@ P.d. kernels can be thought of as inner product after embedding the
data space X in some Hilbert space. As such a p.d. kernel defines a
metric on X.

@ A realization of this embedding is the RKHS, valid without restriction
on the space X nor on the kernel.

@ The RKHS is a space of functions over X'. The norm of a function in
the RKHS is related to its degree of smoothness w.r.t. the metric
defined by the kernel on X.

@ /p-regularized learning in the feature space can be formulated in the

RKHS
1 n
inq — f(xi),yi fl3
pﬂegg{n;lf( (xi), yi) + All ||H}
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@ Learning in high dimension
@ Learning with /5 regularization

© Learning with kernels

o Kernel examples

@ Conclusion
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Kernel examples

@ Polynomial (on R9):
K(x,x') = (x.x' 4+ 1)?

@ Gaussian radial basis function (RBF) (on R)

U112
K(X,X/) — exp <_HX2)2(H>
g

o Laplace kernel (on R)
K(x,x") = exp (=[x — X'|)
e Min kernel (on R})

K(x,x") = min(x, x)

Exercice: for each kernel, find a Hilbert space H and a mapping
& : X — H such that K(x,x") = (®(x), d(x'))
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Example: SVM with a Gaussian kernel

@ Training:

@ Prediction
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Example: SVM with a Gaussian kernel

Z < HX—X:H )
o exp 2o

SVM classification plot

1.0

— 0.5

— 0.0

— —0.5

1
|y
o
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How to choose or make a kernel?

@ Design features
@ Design a distance or similarity measure

@ Design a regularizer on f
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Example: Sobolev norm as regularizer

Theorem
Let X = [0, 1] and the kernel:

V(x,y) €[0,1%, K (x,y) = min(x,y).
Then the RKHS is
H= {f : [0,1] — R, absolutely continuous, f' € L2 ([0,1]), f (0) = 0} )

and the regularizer is a Sobolev norm

1
Q) = || F |2, = /0 (W) du = | ' |20y
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We need to show that

@ H is a Hilbert space
e Vx €0,1], Ky € H,
o V(x,f) €[0,1] x H,(f, Ki)y =  (x).
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Proof (2/5)

H is a pre-Hilbert space

@ f absolutely continuous implies differentiable almost everywhere, and

Vx € [0,1], f(x)=f(0)+ /OX f'(u)du.

e For any f € H, f(0) = 0 implies by Cauchy-Schwarz:

/OX f'(u)du

Therefore, || f |l =0 = f =0, showing that (.,.),, is an inner
product. H is thus a pre-Hilbert space.

()= Sﬁ(/olf’(U)zduy:x/?IIfHH.
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Proof (3/5)

‘H is a Hilbert space

@ To show that H is complete, let (f,)nen a Cauchy sequence in H

o (f)nen is a Cauchy sequence in L2[0,1], thus converges to
g € L?[0,1]

@ By the previous inequality, (f,(x))nen is @ Cauchy sequence and thus
converges to a real number f(x), for any x € [0,1]. Moreover:

f(x) = Ii,r1n fo(x) = Iirr’n /OX fi(u)du = /OX g(u)du,

showing that f is absolutely continuous and ' = g almost
everywhere; in particular, f’ € L2[0,1].

e Finally, f(0) = lim,, f,(0) = 0, therefore f € H and

im || o — £l = 1| 7 — g l2g0. = -
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Proof (4/5)

Vx € [0,1], K, € H

Let Ky(y) = K(x,y) = min(x, y) sur [0, 1]?:

K is differentiable except at s, has a square integrable derivative, and
Ky(0) = 0, therefore K, € H for all x € [0,1]. O
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Proof (5/5)

For all x, f, (f, Ky),, = f (x)
For any x € [0,1] and f € H we have:

1 X
(F, K)oy :/O F(u)K! (u)du :/O F(u)du = £(x),

which shows that K is the r.k. associated to H. [
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Generalization

Theorem

Let X = RY and D a differential operator on a class of functions . such
that, endowed with the inner product:

V(f,g)€H2, <f7g>H:<DfaDg>L2(X)7

it is a Hilbert space.
Then H is a RKHS that admits as r.k. the Green function of the operator
D*D, where D* denotes the adjoint operator of D.
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In case of...

Green functions

Let the differential equation on H:

f=Dg,

where g is unknown. In order to solve it we can look for g of the form:
£()= [ k(o) F(y)dy

for some function k : X2 — R. k must then satisfy, for all x € X,

f(x) = Dg (x) = (Dkx, f) 20y -

k is called the Green function of the operator D.
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Let H be a Hilbert space endowed with the inner product:

<f7g>X = <Dfa Dg>L2(X) )

and K be the Green function of the operator D*D. For all x € X, K, € H
because:

<DKX7 DKX>L2(X) = <D*DKX, KX>L2(X) == KX (X) < .
Moreover, for all f € H and x € X', we have:

f(x) = (D*DKx, ) 12(xy = (DKx, DF) 122y = (K )y

which shows that H is a RKHS with K as r.k. O
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Translation invariant kernels

A kernel K : RY x RY — R is called translation invariant (t.i.) if it only
depends on the difference between its argument, i.e.:

Vix,y) €R*  K(x,y)=r(x—y).

A\

Theorem (Bochner)

A real-valued function k(x — y) on R? is positive definite if and only if it is
the Fourier transform of a symmetric, positive, and finite Borel measure.

v
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RKHS of translation invariant kernels

Theorem

Let K be a translation invariant p.d. kernel, such that k is integrable on
RY as well as its Fourier transform #. The subset Hy of Ly (Rd) that
consists of integrable and continuous functions f such that:
. 2
, 1 |
1= [ 7 g < oo,
2m)? Jre  R(w)

endowed with the inner product:

_ 1 F(w)g (w)* "
(f,g) = 2n)? /Rd d

is a RKHS with K as r.k.

177 / 240



Example: Gaussian RBF kernel

corresponds to:

and
~ 2 02w2
171 = [ |fe)| e o

In particular, all functions in H are infinitely differentiable with all
derivatives in L.
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Example: Laplace kernel

corresponds to:

o _ g
I{(w)_i’yz—l—wz
and ( ) 2)
2 2 (v +w
171 = [ |fe)] T

The RKHS is the set of functions L2 differentiable with derivatives in L2
(Sobolev space).
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Example: sinc kernel

corresponds to:
Rlw)=1(-Q2<w<Q).

The RKHS is the set of functions whose spectrum is included in [, Q]:

H=<Tf :/
|w|>Q
and

||f||%=/|w|<ﬂ\f<w>]2=/WER]f(w)]2=(2w>d/XER|f(x)|2dx.

N 2
f(w)’ dw:O},
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Supervised sequence classification

Data (training)

@ Secreted proteins:
MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEA. ..
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW. . .
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL. . .

@ Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG. . .
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG. . .
MSISESYAKEIKTAFRQOFTDFPIEGEQFEDFLPIIGNP. .

@ Build a classifier to predict whether new proteins are secreted or not.
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String kernels

The idea
@ Map each string x € X to a vector ®(x) € F.

@ Train a classifier for vectors on the images ®(x1),...,®(x,) of the
training set (nearest neighbor, linear perceptron, logistic regression,

support vector machine...)
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Example: substring indexation

Index the feature space by fixed-length strings, i.e.,

& (x) = (Pu (%)) uear

where @, (x) can be:

@ the number of occurrences of u in x (without gaps) : spectrum kernel
(Leslie et al., 2002)

@ the number of occurrences of u in x up to m mismatches (without
gaps) : mismatch kernel (Leslie et al., 2004)

@ the number of occurrences of u in x allowing gaps, with a weight
decaying exponentially with the number of gaps : substring kernel
(Lohdi et al., 2002)
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Spectrum kernel (1/2)

Kernel definition

@ The 3-spectrum of

x = CGGSLIAMMWEFGV
is:
(CGG,GGS,GSL,SLI,LIA,IAM,AMM,MMW,MWF,WFG,FGV) .

@ Let ®,(x) denote the number of occurrences of u in x. The
k-spectrum kernel is:

K (x,x") = Z Py (x) Py (X)) .

uc Ak
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Spectrum kernel (2/2)

Implementation

@ The computation of the kernel is formally a sum over |A|¥ terms, but
at most | x| — k 4+ 1 terms are non-zero in ¢ (x) = Computation
in O (| x|+ |x"|) with pre-indexation of the strings.

e Fast classification of a sequence x in O (| x|):

| x|—k+1

FO)=w-®(x) =Y wu®u(x) = > W sy,
u i=1

W
Remarks

e Work with any string (natural language, time series...)
e Fast and scalable, a good default method for string classification.

@ Variants allow matching of k-mers up to m mismatches.
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Local alignmnent kernel (Saigo et al., 2004)

CGGSLIAMM------ WEFGV

Lo s TR T
C-—---LIVMMNRLMWFGV

ss.g(m) = S(C,C) + S(L, L) + S(I,1) + S(A, V) + 25(M, M)
+S(W, W)+ S(F,F)+ S(G,G)+S(V,V)—g(3) —g(4)

SWs g(x,y) := 7rEml_l?;<}/) ssg(m) is not a kernel

KEE\) (x,y) = Z exp (Bss,g (x,y,m)) s a kernel
weMN(x,y)
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LA kernel is p.d.: proof (1/2)

Definition: Convolution kernel (Haussler, 1999)

Let K1 and K> be two p.d. kernels for strings. The convolution of K and
K>, denoted K1 * K3, is defined for any x,x’ € X’ by:

K1 x Ka(x,y) := Z Ki(x1,y1)Ka(x2,y2).

X1X2=X,¥1Y2=Y

v

If K1 and K are p.d. then Ky x K is p.d..
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LA kernel is p.d.: proof (2/2)

> g\ (n—1)
K{f\) :ZKO*<K§B)*K‘§J)) *K‘Sm*Ko,
n=0

with
@ The constant kernel:
Ko (x,y):=1.

@ A kernel for letters:

) (o0 if |[x|#1where |y|#1,
K3 (xy) = { exp (3S(x,y)) otherwise.

@ A kernel for gaps:

K (x,y) = exp [B (g (|x]) + &g (Ix )] -
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The choice of kernel matters

No. of families with given performance

vy

50

40 F

30

20

10

1
SVM-LA —+—
SVM-pairwise ---x---
SVM-Mismatch ------
SVM-Fisher —a

ROC50

Performance on the SCOP superfamily recognition benchmark (from Saigo

et al., 2004).
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Virtual screening for drug discovery

active

a

inactive eul

NCI AIDS screen results (from http://cactus.nci.nih.gov).
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Image retrieval and classification

From Harchaoui and Bach (2007).
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Graph kernels
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Graph kernels

O Represent each graph x by a vector ®(x) € H, either explicitly or
implicitly through the kernel

K(x,x") = &(x)Td(x).
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Graph kernels

O Represent each graph x by a vector ®(x) € H, either explicitly or
implicitly through the kernel

K(x,x") = &(x)Td(x).

@ Use a linear method for classification in H.
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Indexing by all subgraphs?
@D
(®(0,...,0,1,0,...,0,1,0,...)
t t

@®) @
G
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Indexing by all subgraphs?
@<
(®(0,...,0,1,0,...,0,1,0,...)
t t

@®) @
G

Computing all subgraph occurrences is NP-hard. l
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Indexing by all subgraphs?

(0,...,O,fl,0,...,O,fl,O,...)
(&®)
o

Computing all subgraph occurrences is NP-hard. \

Proof.

@ The linear graph of size n is a subgraph of a graph X with n vertices
iff X has an Hamiltonian path

@ The decision problem whether a graph has a Hamiltonian path is
NP-complete.

O]
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Indexing by specific subgraphs

Substructure selection

We can imagine more limited sets of substuctures that lead to more
computationnally efficient indexing (non-exhaustive list)

@ substructures selected by domain knowledge (MDL fingerprint)
@ all path up to length k (Openeye fingerprint, Nicholls 2005)

o all shortest paths (Borgwardt and Kriegel, 2005)
°

all subgraphs up to k vertices (graphlet kernel, Sherashidze et al.,
2009)

all frequent subgraphs in the database (Helma et al., 2004)
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Example : Indexing by all shortest paths
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Example : Indexing by all shortest paths

Properties (Borgwardt and Kriegel, 2005)

o There are O(n?) shortest paths.

@ The vector of counts can be computed in O(n*) with the
Floyd-Warshall algorithm.
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Example : Indexing by all subgraphs up to k vertices
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Example : Indexing by all subgraphs up to k vertices

Properties (Shervashidze et al., 2009)

o Naive enumeration scales as O(n*).

o Enumeration of connected graphlets in O(nd“~!) for graphs with
degree < d and k < 5.

@ Randomly sample subgraphs if enumeration is infeasible.
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Definition

o A walk of a graph (V/, E) is sequence of vy, ..., vp € V such that
(vi,vit1) € Efori=1,..., n—1.

@ We note W,(G) the set of walks with n vertices of the graph G, and
W(G) the set of all walks.

! 2233
Lo e dole Lo

o e 60 Led’o s oo




Walks # paths
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Walk kernel

@ Let S, denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = Up>1S,.

@ For any graph X let a weight Ag(w) be associated to each walk
w € W(G).
o Let the feature vector ®(G) = ($5(G)),.s be defined by:

o, (G) = Z Ag(w)1 (s is the label sequence of w) .
weW(G)
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Walk kernel

@ Let S, denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = Up>1S,.

@ For any graph X let a weight Ag(w) be associated to each walk
w € W(G).
o Let the feature vector ®(G) = ($5(G)),.s be defined by:

Z Ag(w)1 (s is the label sequence of w) .
weW(G)

o A walk kernel is a graph kernel defined by:

Kuwaik(G1, G2) = Zd’ (G1)®
seS
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Walk kernel examples

@ The nth-order walk kernel is the walk kernel with Ag(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.
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Walk kernel examples

@ The nth-order walk kernel is the walk kernel with Ag(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.

@ The random walk kernel is obtained with Ag(w) = Pg(w), where Pg
is a Markov random walk on G. In that case we have:

K(Gy, Gy) = P(label(Wy) = label(W5)),

where Wi and W, are two independant random walks on G; and G,
respectively (Kashima et al., 2003).
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Walk kernel examples

@ The nth-order walk kernel is the walk kernel with Ag(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.

@ The random walk kernel is obtained with Ag(w) = Pg(w), where Pg
is a Markov random walk on G. In that case we have:

K(Gy, Gy) = P(label(Wy) = label(W5)),

where Wi and W, are two independant random walks on G; and G,
respectively (Kashima et al., 2003).

@ The geometric walk kernel is obtained (when it converges) with
Ag(w) = pleneth(") for 8> 0. In that case the feature space is of
infinite dimension (Gartner et al., 2003).
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Computation of walk kernels

Proposition

These three kernels (nth-order, random and geometric walk kernels) can
be computed efficiently in polynomial time.

201 /240



Product graph

Definition

Let G; = (V4, E1) and Gy = (Va, Ep) be two graphs with labeled vertices.
The product graph G = Gj x Gy is the graph G = (V/, E) with:

Q@ V={(vi,»w) € Vi x Vo : vy and v, have the same label} ,
Q@ E={((v1,v2),(vi, ) e VxV :(v1,v) € E1 and (w2, V}) € Ep}.

1 a b 1b 2a 1d
o0 O
2 c 3c 3e
la 2b 2d
3 4 d e
4c 4e

Gl X Gl x &
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Walk kernel and product graph

There is a bijection between:

© The pairs of walks wy € Wp(G1) and wy € W,(Gy) with the same
label sequences,

@ The walks on the product graph w € W,(G1 x Gy).
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Walk kernel and product graph

There is a bijection between:

© The pairs of walks wy € Wp(G1) and wy € W,(Gy) with the same
label sequences,

@ The walks on the product graph w € W,(G1 x Gy).

Corollary

Kuaik(G1, G2) = Y 05(G1)0s(Gy)
seS

_ 3 A, (W) Ag, (w2)1(/(w1) = I(w2))

(W1,W2)€W(G1)><W(Gl)

= Z AGix G (W)

WEW(Gl X G2)
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Computation of the nth-order walk kernel

For the nth-order walk kernel we have Ag, xg,(w) = 1 if the length of
w is n, 0 otherwise.

@ Therefore:
Knth—order (G17 G2) = Z 1.
WGW,,(G1><G2)
@ Let A be the adjacency matrix of G; X Gp. Then we get:

Kith—order (G17 G2) = Z [An]iJ = ].TAn]. 2

i

Computation in O(n|Gy||Gz|d1d>), where dj is the maximum degree
of G,'.
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Computation of random and geometric walk kernels

@ In both cases Ag(w) for a walk w = v; ... v, can be decomposed as:
Ae(va - ovn) = N(w) [T A (vie1, )
i=2
o Let A; be the vector of A(v) and A; be the matrix of Af(v,v/):

Kuwaik(G1, G2) = i > N[N w)

n=1 weW,(G1 X Gp) i=2

=> NATL

0
=A(I—N) M1

e Computation in O(|G1|3|G2|?)

v
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Extension: branching walks (Ramon and Gartner, 2003;

Mahé and Vert, 2009)

T(v,n+1)= Z H)\ v,v') ,n),
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Image classification (Harchaoui and Bach, 2007)

COREL14 dataset

@ 1400 natural images in 14 classes

@ Compare kernel between histograms (H), walk kernel (W), subtree
kernel (TW), weighted subtree kernel (wTW), and a combination

(M).

Performance comparison on Corel14
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@ Learning in high dimension
@ Learning with /5 regularization

© Learning with kernels

e Multiple Kernel Learning (MKL)
@ Conclusion
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@ We have seen how to make learning algorithms given a kernel K on
some data space X

@ Often we may have several possible kernels:

e by varying the kernel type or parameters on a given description of the
data (eg, linear, polynomial, Gaussian kernels with different
bandwidths...)

o because we have different views of the same data, eg, a protein can be
characterized by its sequence, its structure, its mass spectrometry
profile...

@ How to choose or integrate different kernels in a learning task?
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Setting: learning with one kernel

e Forany f: X = R, let f" = (f(x1),...,f(xn)) € R"
@ Given a p.d. kernel K : X x X — R, we learn with K by solving:

in R(F™) + \|| |3 2
min (F") + All £ {5, (2)

where A > 0 and R : R” — R is an closed! and convex empirical risk:

o R(u) =137 (ui — yi)? for kernel ridge regression
o R(u)= 13" max(1 — y;u;,0) for SVM
o R(u)= 1>, log(1+exp(—yiu;)) for kernel logistic regression

'R is closed if, for each A € R, the sublevel set {u € R” : R(u) < A} is closed. For

example, if R is continuous then it is closed.
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Sum kernel

Definition

Let K1,..., Ky be M kernels on X. The sum kernel Ks is the kernel on X

defined as
M

Vx,x' € X, Ks(x,x')= Z Ki(x,x").
i=1
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Sum kernel and vector concatenation

Fori=1,..., M, let ®; : X — H; be a feature map such that
Ki(x,x") = (®; (x), d; (x )>H,
Then Ks = M. K; can be written as:

Ks(x.x') = (95 (x) . 05 (x)),. -

where ®g: X — Hs =H1 P ...d Hy is the concatenation of the feature

maps P;:

®s (x) = (P1(x),..., P (x)"

Therefore, summing kernels amounts to concatenating their feature space
representations, which is a quite natural way to integrate different features.
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Example: data integration with the sum kernel

Vol. 20 Suppl. 12004, pages i363-1370
DOI: 10.1093/bioinformatics/bth910

[§ Protein network inference from multiple

o1 genomic data: a supervised approach
Y. Yamanishi®*, J.-P. Vert? and M. Kanehisa'
‘

" Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho,
Uji, Kyoto 611-0011, Japan and 2Computational Biology group, Ecole des Mines de
Paris, 35 rue Saint-Honoré, 77305 Fontainebleau cedex, France

Kexp (Expression)

Kppi (Protein interaction)

Kjoc (Localization)

Kphy (Phylogenetic profile)

Kexp + Kppi + Kioc + Kphy
(Integration)

True positive

o

False positive
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The sum kernel: functional point of view

The solution f* € Hy, when we learn with Ks = Z,Ail K; is equal to:

*
i

M
=N f

i=1

where (f*,...,f) € Hk, % ... X H,, is the solution of:

M M
min R (Z f;”) +AD il -
i=1

fiyesfm =1
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Generalization: The sum kernel

Theorem

The solution f* when we learn with K;, = Z,Ai1 7 Ki, with nq, .

—snm = 0,
is equal to:

M
£* — Zf;*a
i=1

where (f*, ..., ) € Hk, % ... x Hk,, is the solution of:

(N L AR
Jmin R(D G| +A) — =

P
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min
fiyesfym i

-1 I
@ R being convex, the problem is strictly convex and has a unique

solution (f*,...,fy) € Hi, X ... X Hk,,
@ By the representer theorem, there exists af,...,a}, € R” such that

n
*(x) = ZO&E-K,'(XJ',X)
j=1

e (of,...,aj},) is the solution of

M M al K
min R Kicj | + A -
ai,...,opmERN ; o ; i
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@ This is equivalent to

M ol Kia; M
min R(u)—i—)\g ITH st. u= E Kia; .
i=1 ! i=1

u,aq,...,ap ER?

@ This is equivalent to the saddle point problem:

min max R (u —i—)\z +2)\’y u—ZKa,

u,aq,...,ap ER? yERN 1
i=

@ By Slater’s condition, strong duality holds, meaning we can invert min
and max:

Y ol Kia; M
max  min R(u)+AZ’7”+2A’yT(u—ZK;a,-).
— ni P

YER" u,ag,...,ap ERN
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@ Minimization in u:
min R(u) 4+ 2\y " u = — max {—2)\7Tu - R(u)} = —R*"(—2\v),
where R* is the Fenchel dual of R:

Yv eR" R*(v)= sup u'v— R(u).
ucRn

@ Minimization in o fori=1,..., M:
: o/ Kia T T
min { ALY =2y Kiaj p = = iy Kiy,
Qi 7],

where the minimum in «; is reached for o = 7;7.
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@ The dual problem is therefore

o riom o (o))

o Note that if learn from a single kernel K;,, we get the same dual
problem

CRY(=20y) — MK, }
;neggg{ (=2My) = Ay Kyy

@ If v* is a solution of the dual problem, then o} = n;v* leading to:
n
VxeX, f(x)= a}Ki(x,x) Znﬁ, (x5, x
=1

o Therefore, f* = S"M_ f* satisfies

M n
=3 0 Ki (x5, %) Zvj (x,x) . O
i=1 j=1
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Learning the kernel

o If we know how to weight each kernel, then we can learn with the

weighted kernel
M
Kn = Z n;i Ki
i=1

@ However, usually we don't know...

@ Perhaps we can optimize the weights 7; during learning?
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An objective function for K

For any p.d. kernel K on X, let
J(K) = min { R(f" +)\f2” .

The function K — J(K) is convex.

This suggests a principled way to "learn” a kernel: define a convex set of
candidate kernels, and minimize J(K) by convex optimization.
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@ We have shown by strong duality that

_ _ px(_ . T
J(K)—%]aRxn{ R*(—=2\y) — Ay K'y}.

@ For each + fixed, this is an affine function of K, hence convex

@ A supremum of convex functions is convex. O
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MKL (Lanckriet et al., 2004)

We consider the set of convex combinations

M M

i=1 i=1

@ We optimize both 1 and f* by solving:

. . . n 2
min JU6) = min min {ROT)+ I, }

The problem is jointly convex in (7, @) and can be solved efficiently.

The output is both a set of weights 7, and a predictor corresponding
to the kernel method trained with kernel K.

This method is usually called Multiple Kernel Learning (MKL).
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Example: protein annotation

Vol. 20 no. 16 2004, pages 2626-2635
doi:10.1093/bioinformatics/bth294

' 4

A statistical framework for genomic data fusion

o1 Gert R. G. Lanckriet!, Tijl De Bie®, Nello Cristianini*,
1 Michael I. Jordan? and William Stafford Noble5 *
‘ " Department of Electrical Engineering and Computer Science, 2Division of Computer
Science, Department of Statistics, University of California, Berkeley 94720, USA,
SDepanment of Electrical Engineering, ESAT-SCD, Katholieke Universiteit Leuven 3001,
Belgium, *Department of Statistics, University of California, Davis 95618, USA and
5Department of Genome Sciences, University of Washington, Seattle 98195, USA
1.0
o —
g 0.9
0.8
0.7
B SW Pfam FFT LI D E  al
o 40
Kernel Data Similarity measure T3
& 20
10
Ksw protein sequences Smith-Waterman 0
Kp protein sequences BLAST B SW Pfam FFT LI D E all
Kpfam protein sequences Pfam HMM P 1
Kgpr hydropathy profile FFT g
Ku1 protein interactions linear kernel 05
Kp protein interactions diffusion kernel =
Kg gene expression radial basis kernel 0
KrND random numbers linear kernel

(B) Membrane proteins
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Example: Image classification (Harchaoui and Bach, 2007)

COREL14 dataset
@ 1400 natural images in 14 classes

@ Compare kernel between histograms (H), walk kernel (W), subtree
kernel (TW), weighted subtree kernel (wWTW), and a combination by
MKL (M).

Performance comparison on Corel14

- Tjst irror
]
o TH
T}

Kernels
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MKL revisited (Bach et al., 2004)

M M
Ky=Y niKi with ne¥y= {n, >0, ni= 1}

i=1 i=1

Theorem
The solution f* of

in _min {R(F") + Al |3
min min {R(F")+ X [y, }

is * = Zf‘il f*, where (f*,...,f) € Hi, X ... x Hk,, is the solution of:

M M 2
(. i |
it (,-_1 | ) 2 (2_; H ,HHK,)
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. . an )\ f_ 2 }
min min {R(E")+ Al 1By,

e infnm
= min min
nEZMﬁ, ,fM ] —

flfT?,‘f}M{ (i ”)+ (lefllm> }
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where the last equality results from:

M 2 Mo
Va e RM ai| = inf i

which is a direct consequence of the Cauchy-Schwarz inequality:

M M ai M 32 % M %
Yo e (5) (5e)

i=1 i=1
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Algorithm: simpleMKL (Rakotomamonjy et al., 2008)

o We want to minimize in € X p:

in J(K,) = mi {~R'(=29) =Mk}

min J(Ky) = min max (=2\) = M Kyy

e For a fixed 7 € X, we can compute f(n) = J(K,) by using a
standard solver for a single kernel to find ~*:

J(Ky) = —R*(=22y") = M\ T K™

o From 7* we can also compute the gradient of J(K;) with respect to

n:
oJ (K . .
6?( ) AV TR
Ni
@ J(K,) can then be minimized on ¥ by a projected gradient or
reduced gradient algorithm.
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Sum kernel vs MKL

e Learning with the sum kernel (uniform combination) solves

M M
min SR ) +A) il ¢ -
ﬁ,.._',fM{ (Z ) > ||HK,}

@ Learning with MKL (best convex combination) solves

M M 2
min { R ]+ A f; _

@ Although MKL can be thought of as optimizing a convex combination
of kernels, it is more correct to think of it as a penalized risk
minimization estimator with the group lasso penalty:

Q(f) = min ZII fillag, -

fi+..+fy=
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Example: ridge vs LASSO regression

o Take X = RY, and for x = (x1,...,xg)" consider the rank-1 kernels:
Vi=1,...,d, K; (X,X’) = x;x .
o A function f; € Hy; has the form f; (x) = Bix;, with || fi ||, = | Bi |

@ The sum kernel is Ks (x,x") = 27:1 xix! = x"x, a function Hy, is of

the form f (x) = B8 x, with norm || 7k, = Il B lIro-
@ Learning with the sum kernel solves a ridge regression problem:

d
min { R(XB) + A 2L
ﬁeRd{ (XB) ;ﬁ}
@ Learning with MKL solves a LASSO regression problem:
d 2
min < R(X3) + X\ f
min ¢ R(XB) (;m )
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Extensions (Micchelli et al., 2005)

M M
Forr>0, K,= iKi with neXj,=4¢n >0, ni =1
n n i
i=1 i=1

Theorem
The solution f* of

. . n 2
i i {RO7 7R, }

is * = Zf‘il f*, where (fi*, ..., fy) € Hi, X ... X Hg,, is the solution of:

r+1

M M 2r r
[ il A fi || o1
{7 (257) 2 (o0

i=1
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@ Conclusion
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In one slide...

@ Learning in high dimension requires regularization, e.g., by #> penalty
for linear methods

o Kernels allow to transform any f»>-regularized linear models into a
nonlinear model, thanks to the kernel trick

@ There exists many kernels, which correspond to different feature
spaces (of finite or infinite dimensions)

@ We can combine and learn kernels, e.g., for integration of
heterogeneous data

@ Hot research topics

o Large-scale ML with kernels
o Deep kernel methods
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@ We can combine and learn kernels, e.g., for integration of
heterogeneous data
@ Hot research topics
o Large-scale ML with kernels
o Deep kernel methods
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