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This is the solution to exercise 4.2 of [1] which shows a link between
linear discriminant analysis (LDA) and ordinary least squares (OLS) in the
binary case.

We have features x ∈ Rp and a two-class response, with class sizes N1,
N2. The training patterns are denoted x1, . . . , xN ∈ Rp, stored in the n× p
matrix X. We encode the class of each training point in the real number
yi = −N/N1 for patterns xi in class 1, and yi = N/N2 for patterns xi in
class 2.

(a) From equation (4.11) in [1] we know that, in the binary case, the
LDA rule classifies a pattern x to class 2 if

x>Σ̂−1(µ̂2− µ̂1) >
1
2
µ̂>2 Σ̂−1µ̂2−

1
2
µ̂>1 Σ̂−1µ̂1 + log

(
N1

N

)
− log

(
N2

N

)
, (1)

and class 1 otherwise.
(b) Let us introduce a few more notations. Let Ui ∈ Rn be the class

indicator vector of class i, and U = U1 + U2 be the vector with all entries
equal to 1. When we encode class 1 (resp. class 2) by the real number a1 =
−N/N1 (resp. a2 = N/N2), the vector of labels becomes Y = a1U1 + a2U2.

We consider the minimization of the least square criterion for β ∈ Rp

and β0 ∈ R:

RSS(β, β0) =
N∑

i=1

(
yi − β0 − β>xi

)2
= (Y − β0U −Xβ)> (Y − β0U −Xβ) .

This convex criterion is minimized when its gradient vanishes, which gives:

∇βRSS = 2X>Xβ − 2X>Y + 2β0X
>U = 0 ,

and

∇β0RSS = 2U>Uβ0 − 2U> (Y −Xβ) = 2Nβ0 − 2U> (Y −Xβ) = 0 .
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From the second condition we obtain:

β̂0 =
1
N

U> (Y −Xβ) , (2)

which we can plug in the first one to obtain the optimality condition for β:(
X>X − 1

n
X>UU>X

)
β̂ = X>Y − 1

N
X>UU>Y . (3)

Let us now try to simplify the left- and right-hand sides of (3). Notice that,
with our notations, we have X>Ui = Niµ̂i for i = 1, 2.

• Left-hand side. Because X>U = X> (U1 + U2) = N1µ̂1 + N2µ̂2, we
can rewrite the matrix on the l.h.s. of (3) as:

X>X − 1
N

(
N2

1 µ̂1µ̂
>
1 + N2

2 µ̂2µ̂
>
2 + N1N2µ̂1µ̂

>
2 + N1N2µ̂2µ̂

>
1

)
. (4)

The estimate of the covariance matrix used in LDA is given by:

(N − 2)Σ̂ =
∑

i:yi=a1

(xi − µ̂1) (xi − µ̂1)
> +

∑
i:yi=a2

(xi − µ̂2) (xi − µ̂2)
>

= X>X −N1µ̂1µ̂
>
1 −N1µ̂2µ̂

>
2

Defining Σ̂B = (µ1 − µ2) (µ1 − µ2)
>, we deduce:

(N − 2)Σ̂ +
N1N2

N
Σ̂B

= X>X +
(

N1N2

N
−N1

)
µ̂1µ̂

>
1 +

(
N1N2

N
−N2

)
µ̂2µ̂

>
2 −

N1N2

N
µ̂2µ̂

>
1 −

N1N2

N
µ̂1µ̂

>
2

= X>X − N2
1

N
µ̂1µ̂

>
1 −

N2
2

N
µ̂2µ̂

>
2 −

N1N2

N
µ̂2µ̂

>
1 −

N1N2

N
µ̂1µ̂

>
2 ,

which is exactly equal to (4)

• Right-hand side. The first term is equal to:

X>Y = X> (a1U1 + a2U2)
= a1N1µ̂1 + a2N2µ̂2 .

The second term is equal to:

1
N

X>UU>Y =
1
N

(N1µ̂1 + N2µ̂2) (a1N1 + a2N2)

=
a1N

2
1 + a2N1N2

N
µ̂1 +

a2N
2
2 + a1N1N2

N
µ̂2 .
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Combining both terms (and using again the fact that N = N1 + N2)
we obtain that the r.h.s. of (3) is equal to:

a1N1N2 − a2N1N2

N
µ̂1+

a2N1N2 − a1N1N2

N
µ̂2 =

N1N2

N
(a1 − a2) (µ̂1 − µ̂2) .

Combining the simplifications for the l.h.s. and r.h.s. of (3) shows that β̂
minimizes RSS if and only if it satisfies:[

(N − 2)Σ̂ +
N1N2

N
Σ̂B

]
β̂ =

N1N2

N
(a1 − a2) (µ̂1 − µ̂2) . (5)

Taking the encoding a1 = −N/N1 and a2 = N/N2, we get

a1 − a2 = − N

N1
− N

N2
= −N (N1 + N2)

N1N2
= − N2

N1N2
,

so the optimality condition (5) becomes[
(N − 2)Σ̂ +

N1N2

N
Σ̂B

]
β̂ = N (µ̂2 − µ̂1) . (6)

(c) Let the real number c = (µ̂2 − µ̂1)
> β̂. Then we immediately get:

Σ̂Bβ̂ = (µ̂2 − µ̂1) (µ̂2 − µ̂1)
> β = c (µ̂2 − µ̂1) ,

showing that Σ̂Bβ̂ is in the direction of (µ̂2 − µ̂1). Combined with (6), this
shows that Σ̂β̂ is also in the direction of (µ̂2 − µ̂1) (as a difference of two
terms in this direction), i.e.,

β̂ ∼ Σ̂−1 (µ̂2 − µ̂1) .

This shows that the OLS estimator is identical to the LDA coefficient, up
to a scalar multiple.

(d) Since (5) holds for any encoding a1 and a2, the result also holds for
any encoding.

(e) Note that with the encoding a1 = −N/N1 and a2 = N/N2 we have

U>Y = a1N1 + a2N2 = −N + N = 0 .

We deduce from the optimality condition (2) the value of β̂0:

β̂0 = − 1
N

U>Xβ̂ = −
(

N1

N
µ̂>1 +

N2

N
µ̂>2

)
β̂ .
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The decision function for a pattern x ∈ Rp is

f(x) = x>β̂ + β̂0 =
(

x> − N1

N
µ̂>1 −

N2

N
µ̂>2

)
β̂

Since we have β̂ = λΣ̂−1 (µ̂2 − µ̂1) for some λ ∈ R, the decision whether or
not:

x>Σ̂−1 (µ̂2 − µ̂1) >

(
N1

N
µ̂>1 +

N2

N
µ̂>2

)
Σ̂−1 (µ̂2 − µ̂1)

When N1 = N2, this simplifies to the LDA decision function (1).
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