Link between LDA and OLS

Jean-Philippe Vert

June 9, 2011

This is the solution to exercise 4.2 of [1] which shows a link between linear discriminant analysis (LDA) and ordinary least squares (OLS) in the binary case.

We have features $x \in \mathbb{R}^{p}$ and a two-class response, with class sizes N_{1}, N_{2}. The training patterns are denoted $x_{1}, \ldots, x_{N} \in \mathbb{R}^{p}$, stored in the $n \times p$ matrix X. We encode the class of each training point in the real number $y_{i}=-N / N_{1}$ for patterns x_{i} in class 1 , and $y_{i}=N / N_{2}$ for patterns x_{i} in class 2.
(a) From equation (4.11) in [1] we know that, in the binary case, the LDA rule classifies a pattern x to class 2 if

$$
\begin{equation*}
x^{\top} \hat{\Sigma}^{-1}\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right)>\frac{1}{2} \hat{\mu}_{2}^{\top} \hat{\Sigma}^{-1} \hat{\mu}_{2}-\frac{1}{2} \hat{\mu}_{1}^{\top} \hat{\Sigma}^{-1} \hat{\mu}_{1}+\log \left(\frac{N_{1}}{N}\right)-\log \left(\frac{N_{2}}{N}\right), \tag{1}
\end{equation*}
$$

and class 1 otherwise.
(b) Let us introduce a few more notations. Let $U_{i} \in \mathbb{R}^{n}$ be the class indicator vector of class i, and $U=U_{1}+U_{2}$ be the vector with all entries equal to 1 . When we encode class 1 (resp. class 2) by the real number $a_{1}=$ $-N / N_{1}\left(\right.$ resp. $\left.a_{2}=N / N 2\right)$, the vector of labels becomes $Y=a_{1} U_{1}+a_{2} U_{2}$.

We consider the minimization of the least square criterion for $\beta \in \mathbb{R}^{p}$ and $\beta_{0} \in \mathbb{R}$:

$$
R S S\left(\beta, \beta_{0}\right)=\sum_{i=1}^{N}\left(y_{i}-\beta_{0}-\beta^{\top} x_{i}\right)^{2}=\left(Y-\beta_{0} U-X \beta\right)^{\top}\left(Y-\beta_{0} U-X \beta\right) .
$$

This convex criterion is minimized when its gradient vanishes, which gives:

$$
\nabla_{\beta} R S S=2 X^{\top} X \beta-2 X^{\top} Y+2 \beta_{0} X^{\top} U=0
$$

and

$$
\nabla_{\beta_{0}} R S S=2 U^{\top} U \beta_{0}-2 U^{\top}(Y-X \beta)=2 N \beta_{0}-2 U^{\top}(Y-X \beta)=0 .
$$

From the second condition we obtain:

$$
\begin{equation*}
\hat{\beta}_{0}=\frac{1}{N} U^{\top}(Y-X \beta), \tag{2}
\end{equation*}
$$

which we can plug in the first one to obtain the optimality condition for β :

$$
\begin{equation*}
\left(X^{\top} X-\frac{1}{n} X^{\top} U U^{\top} X\right) \hat{\beta}=X^{\top} Y-\frac{1}{N} X^{\top} U U^{\top} Y . \tag{3}
\end{equation*}
$$

Let us now try to simplify the left- and right-hand sides of (3). Notice that, with our notations, we have $X^{\top} U_{i}=N_{i} \hat{\mu}_{i}$ for $i=1,2$.

- Left-hand side. Because $X^{\top} U=X^{\top}\left(U_{1}+U_{2}\right)=N_{1} \hat{\mu}_{1}+N_{2} \hat{\mu}_{2}$, we can rewrite the matrix on the l.h.s. of (3) as:

$$
\begin{equation*}
X^{\top} X-\frac{1}{N}\left(N_{1}^{2} \hat{\mu}_{1} \hat{\mu}_{1}^{\top}+N_{2}^{2} \hat{\mu}_{2} \hat{\mu}_{2}^{\top}+N_{1} N_{2} \hat{\mu}_{1} \hat{\mu}_{2}^{\top}+N_{1} N_{2} \hat{\mu}_{2} \hat{\mu}_{1}^{\top}\right) . \tag{4}
\end{equation*}
$$

The estimate of the covariance matrix used in LDA is given by:

$$
\begin{aligned}
(N-2) \hat{\Sigma} & =\sum_{i: y_{i}=a_{1}}\left(x_{i}-\hat{\mu}_{1}\right)\left(x_{i}-\hat{\mu}_{1}\right)^{\top}+\sum_{i: y_{i}=a_{2}}\left(x_{i}-\hat{\mu}_{2}\right)\left(x_{i}-\hat{\mu}_{2}\right)^{\top} \\
& =X^{\top} X-N_{1} \hat{\mu}_{1} \hat{\mu}_{1}^{\top}-N_{1} \hat{\mu}_{2} \hat{\mu}_{2}^{\top}
\end{aligned}
$$

Defining $\hat{\Sigma}_{B}=\left(\mu_{1}-\mu_{2}\right)\left(\mu_{1}-\mu_{2}\right)^{\top}$, we deduce:

$$
\begin{aligned}
(N-2) \hat{\Sigma} & +\frac{N_{1} N_{2}}{N} \hat{\Sigma}_{B} \\
& =X^{\top} X+\left(\frac{N_{1} N_{2}}{N}-N_{1}\right) \hat{\mu}_{1} \hat{\mu}_{1}^{\top}+\left(\frac{N_{1} N_{2}}{N}-N_{2}\right) \hat{\mu}_{2} \hat{\mu}_{2}^{\top}-\frac{N_{1} N_{2}}{N} \hat{\mu}_{2} \hat{\mu}_{1}^{\top}-\frac{N_{1} N_{2}}{N} \hat{\mu}_{1} \hat{\mu}_{2} \\
& =X^{\top} X-\frac{N_{1}^{2}}{N} \hat{\mu}_{1} \hat{\mu}_{1}^{\top}-\frac{N_{2}^{2}}{N} \hat{\mu}_{2} \hat{\mu}_{2}^{\top}-\frac{N_{1} N_{2}}{N} \hat{\mu}_{2} \hat{\mu}_{1}^{\top}-\frac{N_{1} N_{2}}{N} \hat{\mu}_{1} \hat{\mu}_{2}^{\top}
\end{aligned}
$$

which is exactly equal to (4)

- Right-hand side. The first term is equal to:

$$
\begin{aligned}
X^{\top} Y & =X^{\top}\left(a_{1} U_{1}+a_{2} U_{2}\right) \\
& =a_{1} N_{1} \hat{\mu}_{1}+a_{2} N_{2} \hat{\mu}_{2} .
\end{aligned}
$$

The second term is equal to:

$$
\begin{aligned}
\frac{1}{N} X^{\top} U U^{\top} Y & =\frac{1}{N}\left(N_{1} \hat{\mu}_{1}+N_{2} \hat{\mu}_{2}\right)\left(a_{1} N_{1}+a_{2} N_{2}\right) \\
& =\frac{a_{1} N_{1}^{2}+a_{2} N_{1} N_{2}}{N} \hat{\mu}_{1}+\frac{a_{2} N_{2}^{2}+a_{1} N_{1} N_{2}}{N} \hat{\mu}_{2} .
\end{aligned}
$$

Combining both terms (and using again the fact that $N=N_{1}+N_{2}$) we obtain that the r.h.s. of (3) is equal to:

$$
\frac{a_{1} N_{1} N_{2}-a_{2} N_{1} N_{2}}{N} \hat{\mu}_{1}+\frac{a_{2} N_{1} N_{2}-a_{1} N_{1} N_{2}}{N} \hat{\mu}_{2}=\frac{N_{1} N_{2}}{N}\left(a_{1}-a_{2}\right)\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)
$$

Combining the simplifications for the l.h.s. and r.h.s. of (3) shows that $\hat{\beta}$ minimizes $R S S$ if and only if it satisfies:

$$
\begin{equation*}
\left[(N-2) \hat{\Sigma}+\frac{N_{1} N_{2}}{N} \hat{\Sigma}_{B}\right] \hat{\beta}=\frac{N_{1} N_{2}}{N}\left(a_{1}-a_{2}\right)\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right) \tag{5}
\end{equation*}
$$

Taking the encoding $a_{1}=-N / N_{1}$ and $a_{2}=N / N_{2}$, we get

$$
a_{1}-a_{2}=-\frac{N}{N_{1}}-\frac{N}{N_{2}}=-\frac{N\left(N_{1}+N_{2}\right)}{N_{1} N_{2}}=-\frac{N^{2}}{N_{1} N_{2}}
$$

so the optimality condition (5) becomes

$$
\begin{equation*}
\left[(N-2) \hat{\Sigma}+\frac{N_{1} N_{2}}{N} \hat{\Sigma}_{B}\right] \hat{\beta}=N\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right) \tag{6}
\end{equation*}
$$

(c) Let the real number $c=\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right)^{\top} \hat{\beta}$. Then we immediately get:

$$
\hat{\Sigma}_{B} \hat{\beta}=\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right)\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right)^{\top} \beta=c\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right),
$$

showing that $\hat{\Sigma}_{B} \hat{\beta}$ is in the direction of $\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right)$. Combined with (6), this shows that $\hat{\Sigma} \hat{\beta}$ is also in the direction of $\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right)$ (as a difference of two terms in this direction), i.e.,

$$
\hat{\beta} \sim \hat{\Sigma}^{-1}\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right)
$$

This shows that the OLS estimator is identical to the LDA coefficient, up to a scalar multiple.
(d) Since (5) holds for any encoding a_{1} and a_{2}, the result also holds for any encoding.
(e) Note that with the encoding $a_{1}=-N / N_{1}$ and $a_{2}=N / N_{2}$ we have

$$
U^{\top} Y=a_{1} N_{1}+a_{2} N_{2}=-N+N=0
$$

We deduce from the optimality condition (2) the value of $\hat{\beta}_{0}$:

$$
\hat{\beta}_{0}=-\frac{1}{N} U^{\top} X \hat{\beta}=-\left(\frac{N_{1}}{N} \hat{\mu}_{1}^{\top}+\frac{N_{2}}{N} \hat{\mu}_{2}^{\top}\right) \hat{\beta}
$$

The decision function for a pattern $x \in \mathbb{R}^{p}$ is

$$
f(x)=x^{\top} \hat{\beta}+\hat{\beta}_{0}=\left(x^{\top}-\frac{N_{1}}{N} \hat{\mu}_{1}^{\top}-\frac{N_{2}}{N} \hat{\mu}_{2}^{\top}\right) \hat{\beta}
$$

Since we have $\hat{\beta}=\lambda \hat{\Sigma}^{-1}\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right)$ for some $\lambda \in \mathbb{R}$, the decision whether or not:

$$
x^{\top} \hat{\Sigma}^{-1}\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right)>\left(\frac{N_{1}}{N} \hat{\mu}_{1}^{\top}+\frac{N_{2}}{N} \hat{\mu}_{2}^{\top}\right) \hat{\Sigma}^{-1}\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right)
$$

When $N_{1}=N_{2}$, this simplifies to the LDA decision function (1).

References

[1] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning: data mining, inference, and prediction. Springer, 2001.

