Text Categorization Using Adaptive Context Trees

Jean-Philippe Vert

Ecole Normale Supérieure Department of Mathematics and Applications

Jean-Philippe.Vert@ens.fr http://www.dma.ens.fr/users/vert

February 22, 2001

Plan

- Bag-of-words representation
- Statistical Language Models
- Adaptive context trees
- Experimental results

• Text categorization

- Text categorization
- Many solutions (Bayesian classifiers, k-nearest neighbors, boosting, SVM...)

- Text categorization
- Many solutions (Bayesian classifiers, k-nearest neighbors, boosting, SVM...)
- All based on the *bag-of-words* representation for texts

- Text categorization
- Many solutions (Bayesian classifiers, k-nearest neighbors, boosting, SVM...)
- All based on the *bag-of-words* representation for texts
- We propose an alternative representation based on statistical language modelling

Bag-of-words representation

• A text T is mapped to a vector \overrightarrow{v}_T of $\mathbb{R}^{|\mathcal{A}|}$

Bag-of-words representation

- A text T is mapped to a vector \overrightarrow{v}_T of $\mathbb{R}^{|\mathcal{A}|}$
- Trade-off when chosing \mathcal{A} :

Size of \mathcal{A}	Semantic	Stability
	content	
Large (e.g. 20,000 words)	High	Low
Small (e.g. 26 letters)	Low	High

Bag-of-words representation

- A text T is mapped to a vector \overrightarrow{v}_T of $\mathbb{R}^{|\mathcal{A}|}$
- Trade-off when chosing \mathcal{A} :

Size of \mathcal{A}	Semantic	Stability
	content	
Large (e.g. 20,000 words)	High	Low
Small (e.g. 26 letters)	Low	High

 Control on |A|: word stemming, thesaurus, stop words removal, feature selection...

Statistical Language Modelling (SLM)

• Model language = stochastic process $P(X_1 \dots, X_n)$ on \mathcal{A} which "mimics" the language generating process

Statistical Language Modelling (SLM)

- Model language = stochastic process $P(X_1 \dots, X_n)$ on \mathcal{A} which "mimics" the language generating process
- Bayes decision framework (speech recognition, OCR, machine translation...):

$$W^* = \underset{W}{\operatorname{arg\,max}} P(W | I)$$
$$= \underset{W}{\operatorname{arg\,max}} P(W) P(I | W)$$

 Bayes decision framework (bis) for document classification or information retrieval:

$$\begin{aligned} k^* &= \operatorname*{arg\,max}_{i=1,\ldots,k} P(i \,|\, W) \\ &= \operatorname*{arg\,max}_{i=1,\ldots,k} P(i) P(W \,| i) \end{aligned}$$

 Bayes decision framework (bis) for document classification or information retrieval:

$$\begin{aligned} k^* &= \operatorname*{arg\,max}_{i=1,\dots,k} P(i \,|\, W) \\ &= \operatorname*{arg\,max}_{i=1,\dots,k} P(i) P(W \,| i) \end{aligned}$$

• Text modelling: we need local models

• $P_T(X_1 | X_{-\infty}^0)$ is very rich even if $|\mathcal{A}|$ is small

- $P_T(X_1 | X_{-\infty}^0)$ is very rich even if $|\mathcal{A}|$ is small
- Constraints:
 - \star No assumption on the "true" P (non-parametric)

- $P_T(X_1 | X_{-\infty}^0)$ is very rich even if $|\mathcal{A}|$ is small
- Constraints:

No assumption on the "true" P (non-parametric)
 Small number of observations (non-asymptotic)

- $P_T(X_1 | X_{-\infty}^0)$ is very rich even if $|\mathcal{A}|$ is small
- Constraints:
 - No assumption on the "true" P (non-parametric)
 Small number of observations (non-asymptotic)
- Trade-off between *complexity* of a model and *precision* of the estimation

Mathematical Formulation

• If P is a process distribution the conditional relative entropy of $Q(X_1 || X_{-\infty}^0)$ is:

 $\mathcal{D}(P || Q) = \sum_{\substack{x_{-\infty}^{0} \in \mathcal{A}^{\infty}}} P(x_{-\infty}^{0}) \sum_{x_{1} \in \mathcal{A}} P(x_{1} | x_{-\infty}^{0}) \log \frac{P(x_{1} | x_{-\infty}^{0})}{Q(x_{1} | x_{-\infty}^{0})}$

Mathematical Formulation

• If P is a process distribution the conditional relative entropy of $Q(X_1 || X_{-\infty}^0)$ is:

 $\mathcal{D}(P || Q) = \sum_{\substack{x_{-\infty}^0 \in \mathcal{A}^\infty}} P(x_{-\infty}^0) \sum_{x_1 \in \mathcal{A}} P(x_1 | x_{-\infty}^0) \log \frac{P(x_1 | x_{-\infty}^0)}{Q(x_1 | x_{-\infty}^0)}$

• An observation is $Z = (X_{-\infty}^0, X_1)$

• An estimator \hat{P} maps a series of observations $Z_1^N = (Z_1, \ldots, Z_N)$ into a conditional distribution:

$$\hat{P}_{Z_1^N}(X_1 \,|\, X_{-\infty}^0)$$

• An estimator \hat{P} maps a series of observations $Z_1^N = (Z_1, \ldots, Z_N)$ into a conditional distribution:

$$\hat{P}_{Z_1^N}(X_1 \,|\, X_{-\infty}^0)$$

• The average risk of \hat{P} to estimate P is:

$$R(\hat{P}) = E_{Z_1^N \sim P} \mathcal{D}(P \mid\mid \hat{P}_{Z_1^N})$$

Context tree model

• Variable-length Markov models

• A distribution θ_s on \mathcal{A} is attached to each node s:

$$P_{S,\theta}(X_1 \,|\, X^0_{-\infty}) = \theta_{s(X^0_{-\infty})}(X_1)$$

Adaptive context tree model

• A test set Z_1^K is used to estimate the continuous parameters of all models \mathcal{S}

Adaptive context tree model

- A test set Z_1^K is used to estimate the continuous parameters of all models \mathcal{S}
- A validation set Z_{K+1}^N is used to build a posterior Gibbs distribution $\rho(dS)$ on the set of models

Adaptive context tree model

- A test set Z_1^K is used to estimate the continuous parameters of all models \mathcal{S}
- A validation set Z_{K+1}^N is used to build a posterior Gibbs distribution $\rho(dS)$ on the set of models

• The resulting estimator \hat{P} is:

$$\hat{P}(X_1 \mid X_{-\infty}^0) = \sum_{\mathcal{S}} \rho(S) \hat{P}_{\mathcal{S}}(X_1 \mid X_{-\infty}^0)$$

Performance

Theorem 1. The adaptive context tree estimator \hat{P} satisfies:

$$R(\hat{P}) \le \min_{\mathcal{S},\theta} \left[R(P_{\mathcal{S},\theta}) + \frac{|\mathcal{A}|C_N}{N} \right]$$

with

$$C_N = \left(\sqrt{1 + \log|\mathcal{A}|} + \sqrt{|\mathcal{A}| - 1}\right)^2 \left(1 + \frac{1}{N - 2}\right)$$

Application: Text representation

• T a text to represent

Application: Text representation

- T a text to represent
- Sample an i.i.d. set Z_1^N from T by representedly choosing a random position in the text

Application: Text representation

- T a text to represent
- Sample an i.i.d. set Z_1^N from T by representedly choosing a random position in the text
- Use Z_1^N to estimate \hat{P}_T

Application: Scoring a category

• Let \mathcal{C} a category and $\hat{P}_{\mathcal{C}}$ its representation

Application: Scoring a category

• Let C a category and \hat{P}_{C} its representation • The score of C w.r.t. a text T is: $s_{T}(C) = \log P_{C}(T)$ $= -h(P_{T}) - \mathcal{D}(P_{T} || \hat{P}_{C})$

Application: Text categorization

• For two categories C_1 and C_2 :

 $s_T(\mathcal{C}_1) - s_T(\mathcal{C}_2) = \mathcal{D}(P_T || \hat{P}_{\mathcal{C}_2}) - \mathcal{D}(P_T || \hat{P}_{\mathcal{C}_1})$

Application: Text categorization

• For two categories C_1 and C_2 :

$$s_T(\mathcal{C}_1) - s_T(\mathcal{C}_2) = \mathcal{D}(P_T || \hat{P}_{\mathcal{C}_2}) - \mathcal{D}(P_T || \hat{P}_{\mathcal{C}_1})$$

• Chose the category with highest score (naive)

Experiments: Reuters-21578 database

Category	B-E point
earn	93
acq	91
money-fx	71
grain	74
crude	79
trade	56
interest	63
ship	75

Experiment: 20 Newsgroup Database

- Maps any new text into one out of 20 categories
- Accuracy = 90,0 %

Experiment: Automatic text generation

talk.politics.mideast: associattements in the greeks who be neven exclub no bribedom of spread marinary s trooperties savi tack acter i ruthh jake bony soc.religion.christian: that must as a friend one jerome unimovingt ail serving are national atan cwru evid which done joseph in response of the wholeleaseriend

Representation of a complex object with statistical methods

- Representation of a complex object with statistical methods
- Encouraging results in spite of obvious drawbacks (what about language?)

- Representation of a complex object with statistical methods
- Encouraging results in spite of obvious drawbacks (what about language?)
- General method which can be applied to any natural language (e.g. Japanese) or other complex strings (e.g. biological sequences)

- Representation of a complex object with statistical methods
- Encouraging results in spite of obvious drawbacks (what about language?)
- General method which can be applied to any natural language (e.g. Japanese) or other complex strings (e.g. biological sequences)