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Text categorization
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Performance

A

Theorem 1. The adaptive context tree estimator P
satisfies:

R(P) < min | R(Ps ) 4 Al
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Let C a category and P its representation

The score of C w.r.t. a text 1T is:
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Experiments: Reuters-21578 database

Category | B-E point
earn 93

acq 01
money-fx 71
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Experiment: 20 Newsgroup Database

Maps any new text into one out of 20 categories

Accuracy = 90,0 %
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Experiment: Automatic text generation

talk.politics.mideast:

assoclattements in the greeks who be neven
exclub no bribedom of spread marinary s
trooperties savi tack acter i ruthh jake bony

soc.religion.christian:




19

Conclusion

Representation of a complex object with statistical
methods




19

Conclusion

Representation of a complex object with statistical
methods




19

Conclusion

Representation of a complex object with statistical
methods

Encouraging results in spite of obvious drawbacks (what




19

Conclusion

Representation of a complex object with statistical
methods

Encouraging results in spite of obvious drawbacks (what




