Kernel Methods in Bioinformatics

Jean-Philippe Vert

Kanehisa Lab, Bioinformatics Center, Kyoto University, Japan

Jean-Philippe.Vert@mines.org

Kanehisa Colloquium, Kyoto University, April 22, 2002.

Outline

- 1. What is a kernel?
- 2. What you can do with a kernel.
- 3. Making kernels.
- 4. Kernelizing the proteome.

What is a kernel

Remember the dot product?

For two vectors:

$$\vec{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix}$$
 and $\vec{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}$,

the dot product is:

 $\vec{x}.\vec{y} = x_1.y_1 + \ldots + x_m.y_m = \|x\|.\|y\|.cos(\alpha)$

A simple kernel for genes

• Consider a set of genes g_1, g_2, \ldots, g_N . Represent each gene g_i by its nucleotide composition (a vector $\vec{\Phi}(g_i)$ with 4 entries):

$$\vec{\Phi}(g_1) = \begin{pmatrix} 0.2 \\ 0.3 \\ 0.4 \\ 0.1 \end{pmatrix}, \vec{\Phi}(g_2) = \begin{pmatrix} 0.1 \\ 0.7 \\ 0.1 \\ 0.1 \end{pmatrix}, \dots$$

• My first kernel:

 $K(g_1, g_2) = 0.2 \times 0.1 + 0.3 \times 0.7 + 0.4 \times 0.1 + 0.1 \times 0.1 = 0.28$

General definition

You use kernels everyday!

Suppose you give me a function $K(g_i, g_j)$ which "measures" the similarity between genes in some sense (example: Smith-Waterman score). Is it a kernel?

Theorem 1. [Mercer] It is a kernel if the following matrix is symetric positive definite (all eigenvalues are positive):

$$K = \begin{pmatrix} K(g_1, g_1) & K(g_1, g_2) & \dots \\ K(g_2, g_1) & K(g_2, g_2) & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

Summary

- A kernel is a similarity measure
- It defines the geometry of the feature space (lenghts and angles)
- 3 ways to make kernels:
 - * Define a set of features of interest, compute the feature vector of every gene, and compute the dot products.
 - * Define a large set of features and find tricks to compute the dot product implicitely (without computing the feature vectors)
 - Start with a similarity measure you find pertinent (e.g., SW score) and check that it is a kernel.

What you can do with a kernel

Overview

Suppose you are given a kernel K(.,.). Then you can perform various operations in the feature space without computing the image $\vec{\Phi}(g)$ of each gene g:

- Compute the distance between any two genes, or between any gene and the center of mass of the gene database
- Principal component analysis (PCA)
- Canonical correlation analysis (CCA)
- Classify the genes into classes (Support vector machines)

Distance between two genes

 $d(g_1, g_2)^2 = \|\vec{\Phi}(g_1) - \vec{\Phi}(g_2)\|^2$ = $\left(\vec{\Phi}(g_1) - \vec{\Phi}(g_2)\right) \cdot \left(\vec{\Phi}(g_1) - \vec{\Phi}(g_2)\right)$ = $\vec{\Phi}(g_1) \cdot \vec{\Phi}(g_1) + \vec{\Phi}(g_2) \cdot \vec{\Phi}(g_2) - 2\vec{\Phi}(g_1) \cdot \vec{\Phi}(g_2)$ $d(g_1, g_2)^2 = K(g_1, g_1) + K(g_2, g_2) - 2K(g_1, g_2)$

Distance between a gene and the center of mass

Center of mass: $\vec{m} = \frac{1}{N} \sum_{i=1}^{N} \vec{\Phi}(g_i)$, hence: $\|\vec{\Phi}(g_1) - \vec{m}\|^2 = \vec{\Phi}(g_1) \cdot \vec{\Phi}(g_1) - 2\vec{\Phi}(g_1) \cdot \vec{m} + \vec{m} \cdot \vec{m}$ $= K(g_1, g_1) - \frac{2}{N} \sum_{i=1}^{N} K(g_1, g_i) + \frac{1}{N^2} \sum_{i,j=1}^{N} K(g_i, g_j)$

Example: greedy multiple alignment (Gorodkin et al., GIW 2001)

- Use the SW score as a kernel for sequences
- Compute the distance between each sequence and the center of mass
- First align the sequences near the center of mass
- Then add sequences one by one to the multiple alignment, by increasing distance from the center of mass

Principal component analysis (PCA)

Find the eigenvectors of the matrix:

$$K = \left(\vec{\Phi}(g_i) \cdot \vec{\Phi}(g_j)\right)_{i,j=1...N}$$
$$= \left(K(g_i, g_j)\right)_{i,j=1...N}$$

Useful to represent the objects as small vectors (feature extraction).

Canonical correlation analysis (CCA)

 K_1 and K_2 are two different kernels for the same objects (genes). CCA is performed by solving the generalized eigenvalue problem:

$$\begin{pmatrix} 0 & K_1 K_2 \\ K_2 K_1 & 0 \end{pmatrix} \vec{\xi} = \rho \begin{pmatrix} K_1^2 & 0 \\ 0 & K_2^2 \end{pmatrix} \vec{\xi}$$

Useful to find correlations between different representations of the same objects

Classification: support vector machines (SVM)

Find a linear boundary with maximum margin by solving:

$$\begin{cases} \max_{\vec{\alpha}} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j K(g_i, g_j) \\ \forall i = 1, \dots, n \quad 0 \le \alpha_i \le C \\ \sum_{i=1}^{n} \alpha_i y_i = 0 \end{cases}$$

Examples: SVM in bioinformatics

- Gene functional classification from microarry: Brown et al. (2000), Pavlidis et al. (2001)
- Tissue classification from microarray: Mukherje et al. (1999), Furey et al. (2000), Guyon et al. (2001)
- Protein family prediction from sequence: Jaakkoola et al. (1998)
- Protein secondary structure prediction: Hua et al. (2001)
- Protein subcellular localization prediction from sequence: Hua et al. (2001)

Summary

- If you have a kernel, you can do many things implicitly in the feature space.
- Methods such as SVMs are very efficient in real-world applications
- You can use any kernel with any method
- Gains popularity in bionformatics, but much remains to be done (up to now, limited to SVMs with classical kernels)

Making kernels

Overview

- Why make kernels?
- Kernel for strings based on rare common substrings
- Kernel for phylogenetic profiles
- Making a kernel from a graph

Why make kernels

 To include biological knowledge in the feature space, e.g.: "two genes should be close if...":

- * their sequences are similar,
- * their evolutions are similar,
- ★ their expression patterns are similar...

 To be able to use powerful kernel methods based on these knowledges

Kernel for strings (PSB02)

- Goal: a kernel for fixed-length strings (sequence windows...)
- Intuition: two strings should get closer in the feature space when they share rare common substrings

• Solution:

Let p a probability distribution on the set of sequences of length m (e.g., a position specific weight matrix)
The kernel between two strings x and y is:

$$K(x,y) = p(x)p(y) \sum_{s \text{ common substring}} \frac{1}{p(s)}$$

Properties of the string kernel

- K(.,.) is a kernel
- Two strings get closer in the feature space when they share rare common subparts
- Efficient computation: For sequences of length m, there is an algorithm to compute the kernel with a complexity O(m) (even though there are up to 2^m common substrings)

Application: SVM prediction of signal peptide cleavage site (1)

Signal peptides

(1):Leucine-binding protein, (2):Pre-alkaline phosphatase,(3)Pre-lipoprotein

- 6-12 hydrophobic residues (in yellow)
- (-3,-1) : small uncharged residues

Experiment

 Challenge : classification of aminoacids windows, positive if cleavage occurs between -1 and +1:

$$[x_{-8}, x_{-7}, \dots, x_{-1}, x_1, x_2]$$

- 1,418 positive examples, 65,216 negative examples
- Classification by a weight matrix;
- Classification by a SVM + string kernel

Result: ROC curves

Kernel for phylogenetic profiles (ISMB02)

- Goal: a kernel for phylogenetic profiles (a string of bit which indicates the presence or absence of an homolog in every fully sequenced organism)
- Intuition: two genes should get closer in the feature space when they are likely to have shared common evolution patterns
- Solution Create a simple probabilistic model for the transmission of genes between species during evolution, and

$$K(x,y) = \sum p(e)p(x|e)p(y|e)$$

e evolution pattern

Evolution patterns

Properties of the tree kernel

- K(.,.) is a kernel
- Two profiles get closer in the feature space when they have shared common evolution patterns with high probability
- Efficient computation: For profiles of length m, there is an algorithm to compute the kernel with a complexity O(m) (even though there is an exponential number of evolution patterns)

Application: SVM function prediction from phylogenetic profiles (ROC_{50} performance)

Functional class	Dot kernel	Tree kernel	Difference
Amino-acid transporters	0.74	0.81	+ 9%
Fermentation	0.68	0.73	+ 7%
ABC transporters	0.64	0.87	+ 36%
C-compound transport	0.59	0.68	+ 15%
Amino-acid biosynthesis	0.37	0.46	+ 24%
Amino-acid metabolism	0.35	0.32	- 9%
Tricarboxylic-acid pathway	0.33	0.48	+ 45%
Transport Facilitation	0.33	0.28	- 15%

Application: kernel PCA of phylogenetic profiles

Making a kernel from a graph (Kandor, 2001)

- Goal: Suppose you can define binary relations between genes (e.g., protein interaction). How to define a kernel for genes which reflects the topology of the graph?
- Intuition: Two nodes get closer in the feature space when there are many short paths between them in the graph
- Solution Let A be the adjacency matrix (where diagonal terms are adjusted such that the sum of each row be nulle) For any λ > 0, the kernel matrix is:

 $K = \exp(\lambda A)$

Example of a graph kernel (1)

Example of a graph kernel (2)

 $= \begin{pmatrix} 0.49 & 0.12 & 0.23 & 0.10 & 0.03 \\ 0.12 & 0.49 & 0.23 & 0.10 & 0.03 \\ 0.23 & 0.23 & 0.24 & 0.17 & 0.10 \\ 0.10 & 0.10 & 0.17 & 0.31 & 0.30 \\ 0.03 & 0.03 & 0.10 & 0.30 & 0.52 \end{pmatrix}$

$$K = \exp(A) =$$

Summary: making kernels

- Kernels can be engineered to include some prior (biological) knowledge in the geometry of the feature space
- The biological knowledge is an intuition about "when two objects (genes) should be considered similar / close to each other".
- Once engineered, the kernel can be used by any kernel method for various purpose (sound mathematical framework)
- Kernel engineering is an active field of research currently

Part 4

Kernelizing the proteome? (tentative)

Motivations

- There is no "universal kernel" for genes
- Different relationships (sequence similarity, function similarity, evolution similarity...) lead to different kernels
- The recent research on kernel engineering makes it possible to translate those relationships into kernels
- New analysis opportunities?

The kernel toolbox

Similarity based on	Kernel
Aminoacid composition	linear, polynomial, Gaussian
Sequence	SW, Fisher
Evolution	Phylogenetic
Pathway (KEGG)	Graph kernel
Interaction (Y2H data)	Graph kernel
Expression (microarray)	linear, polynomial, Gaussian

"Any kernel works with any kernel method"

Comparison with KEGG's approach

	Kernel approach	Graph theoretical	
		approach	
Gene representation	Points in a Euclidean	Nodes in a graph	
	space		
Similarity	Euclidean distance	Path length	
Computation	Kernel methods	Graph algorithms	
Global, noisy	PCA, CCA, SVM		
statistical analysis			
Exact computation		CC, clusters	

Some sort of complementarity. Depends on the final goal.

Example: correlations between expression and metabolic pathways

- Expression: Spellman's alpha factor arrest time series data (18 timepoints following removal of alpha factor added 120 minutes earlier). Use a linear kernel K₁ after normalization of the expression profiles.
- Metabolic pathways: KEGG's LIGAND database. Create a graph kernel K_2
- Perform a CCA analysis between K_1 and K_2 (742 common genes)

1st CCA scores

Upper left expression

Average expression of the 50 genes with highest $s_2 - s_1$.

50 genes with highest $s_2 - s_1$ belong to:

- Oxidative phosphorylation (10 genes)
- Citrate cycle (7)
- Purine metabolism (6)
- Glycerolipid metabolism (6)
- Sulfur metobolism (5)

• Selenoaminoacid metabolism (4), etc...

Lower right expression

Average expression of the 50 genes with highest $s_2 - s_1$.

- RNA polymerase (11 genes)
- Pyrimidine metabolism (10)
- Aminoacyl-tRNA biosynthesis (7)
- Urea cycle and metabolism of amino groups (3)
- Oxidative phosphorlation (3)
- ATP synthesis(3) , etc...

RNA polymerase II (Saccharomyces cerevisiae)

Eukaryotic Pol II

B2					
D2	B3	B4	B5	B6	B7
ы	B8	B9	B10	B11	B12

Eukaryotic Pol III

C2				
02	C3	C4	C5	C11
	C19	C25	C31	C34

Eukaryotic Pol I

Conclusion

Conclusion

- The kernel approach is one way to represent and handle genes
- Biological knowledge can be included through kernel engineering
- Each kernel can be used by each kernel method (SVM, PCA, CCA,...)
- These methods usually perform well (SVM...), and provide new analysis opportunities (PCA of the metabolic pathways...)
- Much remains to be done!