Support Vector Machines (SVM), and applications in bioinformatics

Jean-Philippe Vert

Bioinformatics Center, Kyoto University, Japan Jean-Philippe.Vert@mines.org

Graduate School of Mathematics, Kyushu University, Japan, June 28, 2002.

Outline

- 1. Overview of statistical learning theory
- 2. Linear Support vector machines
- 3. Non-linear SVM and kernels
- 4. Applications in bioinformatics

Part 1

An overview of Statistical Learning Theory (SLT)

The pattern recognition problem

- Observation : $x \in \mathcal{X}$
- Class : $y \in \{-1, 1\}$
- Goal : predict the unknown class of an observation

Examples

- Character recognition (OCR): x is an image, y is a letter
- Face recognition: x is an image, y indicates the presence of a face in the picture
- Text classification: x is a text, y is a category (topic, spam / non spam...)
- Medical diagnosis: x is a set of features (age, sex, blood type, genome...), y indicates the risk.

Probabilistic setting

- (X, Y) assumed to be a $\mathcal{X} \times \{-1, 1\}$ -valued random pair
- Unknown joint distribution P
- A classifier is a mapping $f: \mathcal{X} \to \{-1, 1\}$
- Risk of a classifier: $R(f) = P(f(X) \neq Y)$

Learning algorithm

- $S = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ *P*-i.i.d. is observed
- A learning algorithm is a mapping $S \to f_n \in \mathcal{F}$, where \mathcal{F} is a set of classifiers
- Goal: $R(f_n)$ as small as possible

Empirical risk minimization

• Empirical risk of a classifier:

$$R_{emp}(f) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\{f(X_i) \neq Y_i\}}$$

• ERM induction principle: choose

$$\hat{f} = \arg\min_{f\in\mathcal{F}} R_{emp}(f)$$

• Question: under which conditions is the algorithm consistent, i.e., $R(\hat{f}_n) \to \inf_{f \in \mathcal{F}} R(f)$ when $n \to \infty$?

Uniform law of large numbers

Let f^* s.t. $R(f^*) = \inf_{f \in \mathcal{F}} R(f)$. Then we have:

$$0 \le R(\hat{f}) - R(f^*) \le R(\hat{f}) - R_{emp}(\hat{f}) + R_{emp}(f^*) - R(f^*)$$
$$\le \sup_{f \in \mathcal{F}} \left(R(\hat{f}) - R_{emp}(\hat{f}) \right) + R_{emp}(f^*) - R(f^*)$$

The term $|R_{emp}(f^*) - R(f^*)|$ converges in probability to 0, by the law of large numbers.

Equivalence between ERM and ULLN

Theorem 1. [Vapnik and Chervonenkis] *One-sided uniform converger in probability*,

$$\lim_{n \to +\infty} P\left\{ \sup_{f \in \mathcal{F}} \left(R(f) - R_{emp}(f) \right) > \epsilon \right\} = 0,$$

for all $\epsilon > 0$ is a necessary and sufficient condition for nontrivial consistency of empirical risk minimization.

(remains consistent even after the "best" functions have been removed).

When does one-sided ULLN hold?

For a given sample $S_n = \{(x_1, y_1), \dots, (x_n, y_n)\}$ let $\mathcal{N}(\mathcal{F}, S_n)$ be the cardinality of \mathcal{F} when restricted to (x_1, \dots, x_n) . Then Vapnik showed:

$$P\left\{\sup_{f\in\mathcal{F}} \left(R(f) - R_{emp}(f)\right) > \epsilon\right\} \le 4\exp\left(\log E[\mathcal{N}(\mathcal{F}, S_n)] - \frac{m\epsilon^2}{8}\right)$$

If $\log E[\mathcal{N}(\mathcal{F}, S_n)]$ (the annealed entropy) grows sublinearly, one-sided ULLN holds.

Other capacity concepts: VC entropy

The VC entropy is $H_{\mathcal{F}}(n) = E \log \mathcal{N}(\mathcal{F}, S_n)$. The convergence

$$\lim_{n \to +\infty} \frac{H_{\mathcal{F}}(n)}{n} = 0$$

is equivalent to uniform two-sided convergence of risk:

$$\forall \epsilon > 0, \quad \lim_{n \to +\infty} P\left\{ \sup_{f \in \mathcal{F}} |R(f) - R_{emp}(f)| > \epsilon \right\} = 0$$

This implies consistency of ERM.

Other capacity concepts: annealed entropy

The annealed entropy is $H^{ann}_{\mathcal{F}}(n) = \log E\mathcal{N}(\mathcal{F}, S_n)$ (larger than VC entropy by Jensen). The convergence

$$\lim_{n \to +\infty} \frac{H_{\mathcal{F}}^{ann}(n)}{n} = 0$$

is equivalent to exponentially fast convergence for the risk:

$$P\left\{\sup_{f\in\mathcal{F}}|R(f)-R_{emp}(f)|>\epsilon\right\}\leq 4\exp\left(\left(\frac{H_{\mathcal{F}}^{ann}(n)}{n}-\epsilon^2\right).m\right)$$

Other capacity concepts: growth function

The shattering coefficient is $\mathcal{N}(\mathcal{F}, n) = max_{S_n}\mathcal{N}(\mathcal{F}, S_n)$, and the growth function is $G_{\mathcal{F}}(n) = \log \mathcal{N}(\mathcal{F}, n)$. The convergence

$$\lim_{n \to +\infty} \frac{G_{\mathcal{F}}(n)}{n} = 0$$

is equivalent to exponentially fast convergence of risk for all underlying distributions P.

VC dimension

The growth function obviously satisfies $G_{\mathcal{F}}(n) \leq n \log(2)$. The VC dimension h is the maximum number of points which can be shattered (separated in 2^n ways). Then the following holds:

$$G_{\mathcal{F}}(n) \le h\left(\log\frac{n}{h} + 1\right).$$

Therefore:

• the growth function increases linearly up to n = h

• then in increases logarithmically for n > h

Example: VC dimension of hyperplane classifiers

For hyperplanes in dimension N, the VC dimension is h = N + 1. em This is not interesting in large dimensions

VC dimension of large margin hyperplane classifiers

The set of hyperplanes classifiers with margin at least γ has a VC dimension upper bounded by

$$h \le \frac{R^2}{M^2}$$

where \overline{R} is the radius of the smallest sphere containing all x.

Conclusion about SLT

- Learning algorithms can learn if the capacity of the set of classifiers they produce is controlled
- Vapnik introduced a simple measure of capacity, the VC dimension, whose finiteness is equivalent to the consistency of the learning algorithm
- For hyperplane classifiers, the VC dimension can be controlled irrespective of the dimension of the space, by controlling the margin ... no curse of dimensionality?

Support Vector Machines (SVM)

Linear classifiers for separable data

The width of the tube is $\frac{1}{||w||}$. It should be as large a possible, according to SLT

Maximum margin hyperplane

We should maximize ||w|| under the constraints:

$$\begin{cases} w.x_i + b \ge 1 & \text{if } y_1 = 1, \\ w.x_i + b \le -1 & \text{if } y_1 = -1, \end{cases}$$

which can be rewritten as: minimize $||w||^2$ under the constraints

$$\forall i \in \{1, \dots, n\}, \quad y_i(w.x_i + b) - 1 \ge 0.$$

This is a classical quadratic program.

Dual formulation

We introduce Lagrange multipliers $\alpha_1, \ldots, \alpha_n$ and consider the Lagrangian:

$$L(w, b, \alpha) = \frac{1}{2}w'w - \sum_{i=1}^{n} \alpha_i \left[y_i(w.x_i + b) - 1 \right].$$

The dual function is $L(\alpha) = \inf_{w,b} L(w, b, \alpha)$ can be computed by differentiating the Lagrangian. This leads to the dual problem: maximize

$$L(\alpha) = \sum_{i=1}^{n} \alpha_i - \sum_{i,j=1}^{n} y_i y_j \alpha_i \alpha_j x_i x_j,$$

under the constraints $\alpha \ge 0$ and $\sum_{i=1}^{n} y_i \alpha_i = 0.$

Interpretation of Lagrange multipliers

KKT condition:

•
$$\alpha_i > 0 \implies y_i(w.x_i + b) = 1$$
: support vectors

• $\alpha_i = 0 \implies y_i(w.x_i + b) \ge 1$: useless vectors

Linear soft margin SVM

Introduce slack variables ζ_1, \ldots, ζ_n to allow misclassification. Trade-off between large margin and misclassification.

Linear soft margin SVM

Maximize

$$||w||^2 + C \sum_{i=1}^n \zeta_i,$$

under the constraints:

$$\begin{cases} \zeta_i \ge 0, \\ y_i(w.x_i + b) \ge 1 - \zeta_i, \end{cases}$$

for $i = 1, \ldots, n$.

Dual formulation of soft margin

Expressing the Lagrangian leads to the dual problem:maximize

$$L(\alpha) = \sum_{i=1}^{n} \alpha_i - \sum_{i,j=1}^{n} y_i y_j \alpha_i \alpha_j x_i x_j,$$

under the constraints:

$$\begin{cases} 0 \le \alpha_i \le C, \forall i \in \{1, \dots, n\}, \\ \sum_{i=1}^n y_i \alpha_i = 0. \end{cases}$$

Interpretation of the dual variable

SVM classification

w is recovered from α by:

$$w = \sum_{i=1}^{n} \alpha_i x_i.$$

The classification of a new observation $x \in \mathcal{X}$ is based on the sign of:

$$f(x) = w.x + b(\alpha) = \sum_{i=1}^{n} \alpha_i x_i.x + b(\alpha).$$

Only support vectors are used!

Conclusion about linear SVM

- SVM find a trade-off between large margin and misclassification
- The dual formulation is a quadratic program (convex functional, linear constraints) easy to solve
- The final classifier only uses support vectors (compression..)

Nonlinear SVM and kernels

Feature space

 $\Phi: \mathcal{X} \to \mathbb{R}^N$ a non-linear mapping. SVM can be performed in the feature space.

Kernel function

Let $K : \mathcal{X}^2 \to \mathbb{R}$ be defined by:

 $\overline{\forall (x, x') \in \mathcal{X}^2}, \quad K(x, x') = \Phi(x).\Phi(x').$

K is called a kernel function.

Kernel trick

The function to minimize is:

$$L(\alpha) = \sum_{i=1}^{n} \alpha_i - \sum_{i,j=1}^{n} y_i y_j \alpha_i \alpha_j \Phi(x_i) \Phi(x_j)$$
$$= \sum_{i=1}^{n} \alpha_i - \sum_{i,j=1}^{n} y_i y_j \alpha_i \alpha_j K(x_i, x_j)$$

The classifier is:

$$f(x) = \sum_{i=1}^{n} \alpha_i \Phi(x_i) \cdot \Phi(x) + b(\alpha) = \sum_{i=1}^{n} \alpha_i K(x_i, x) + b(\alpha).$$

Kernel trick

No Φ anymore! Only K(.,.) is used!

SVM works implicitly in the feature space through the kernel function.

Kernels are often more convenient to work with than explicit $\Phi!$

Kernel examples

• Polynomial:

$$K(x, x') = (x \cdot x')^d$$

• Gaussian radial basis function

$$K(x, x') = \exp\left(\frac{||x - x'||^2}{2\sigma^2}\right)$$

• Sigmoid

$$K(x, x') = \tanh(\kappa x \cdot x' + \theta)$$

How to make a kernel?

Theorem 2. [Mercer] A function $K : \mathcal{X}^2 \to \mathbb{R}$ is a valid kernel if and only if, for any $p \in \mathbb{N}$ and (x_1, \ldots, x_p) , the Gram matrix:

$$K_{x,x'} = K(x,x')$$

is positive semidefinite.

Many similarity functions on general object spaces are valid kernels! The validity of a candidate kernel can easily be checked!

Kernel engineering

Design a kernel for a particular application, by including some prior knowledge (invariance,...)

- Translation and rotation invariance for images in OCR
- Periodicity in coding DNA sequences
- Sharing of rare features

More kernel tricks

Any algorithm which can be expressed only in terms of dot product can be kernelized!

- kernel-PCA
- kernel-CCA
- kernel-ICA
- kernel-clustering
- kernel-Fisher discriminant

Conclusion about kernels

- Like other kernel methods, SVM works implicitly in a highdimensional feature space
- Overfitting is avoided thanks to the choice of large margin
- Computation is tractable thanks to the kernel trick
- Good performance in real-wold applications

Part 4

Applications in bioinformatics

Microarray data analysis

- Gene functional classification: Brown et al. (2000), Pavlidis et al. (2001)
- Tissue classification: Mukherje et al. (1999), Furey et al. (2000), Guyon et al. (2001)

Proteins

- Family prediction: Jaakkoola et al. (1998)
- Fold recognition : Ding et al. (2001)
- Protein-protein interaction prediction: Bock et al. (2001)
- Secondary structure prediction: Hua et al. (2001)
- Subcellular localization prediction: Hua et al. (2001)

New kernels for bioinformatics

- Fisher kernel (Jaakkoola and Haussler 1998)
- Convolution kernels (Haussler 99, Watkins 1999)
- Kernel for translation initiation site (Zien et al. 2000)
- String kernel (Lodhi et al. 2000)
- Spectrum kernel (Leslie et al., 2002)
- Interpolated kernel (Vert 2002)

More kernel methods and exotic kernels

Graph-driven feature extraction from microarray data (Vert and Kanehisa, 2002)

Graph-driven features extraction

- Diffusion kernel $K_1 = \exp(-\tau L)$, where L = D A is the Laplace matrix of the graph, to encode the graph topology.
- Linear kernel K_2 between the expression profiles.
- Perform kernel-CCA to extract correlations between the feature spaces of K₁ and K₂, i.e., between the topology of the graph and the expression profiles

Conclusion

Conclusion

- Sound theoretical foundations and good results in real-world applications
- Modularity: any kernel works with any kernel method
- New possibility: engineer kernel for strings, graphs, genes, molecules,...
- More info: http://www.kernel-machines.org