Support Vector Machines (SVM), and applications in bioinformatics

Jean-Philippe Vert

Bioinformatics Center, Kyoto University, Japan Jean-Philippe.Vert@mines.org

Graduate School of Mathematics, Kyushu University, Japan, June 28, 2002.

Outline

1. Overview of statistical learning theory
2. Linear Support vector machines
3. Non-linear SVM and kernels
4. Applications in bioinformatics

Part 1

An overview of Statistical Learning Theory (SLT)

The pattern recognition problem

- Observation : $x \in \mathcal{X}$
- Class : $y \in\{-1,1\}$
- Goal : predict the unknown class of an observation

Examples

- Character recognition (OCR): x is an image, y is a letter
- Face recognition: x is an image, y indicates the presence of a face in the picture
- Text classification: x is a text, y is a category (topic, spam / non spam...)
- Medical diagnosis: x is a set of features (age, sex, blood type, genome...), y indicates the risk.

Probabilistic setting

- (X, Y) assumed to be a $\mathcal{X} \times\{-1,1\}$-valued random pair
- Unknown joint distribution P
- A classifier is a mapping $f: \mathcal{X} \rightarrow\{-1,1\}$
- Risk of a classifier: $R(f)=P(f(X) \neq Y)$

Learning algorithm

- $S=\left\{\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)\right\}$-i.i.d. is observed
- A learning algorithm is a mapping $S \rightarrow f_{n} \in \mathcal{F}$, where \mathcal{F} is a set of classifiers
- Goal: $R\left(f_{n}\right)$ as small as possible

Empirical risk minimization

- Empirical risk of a classifier:

$$
R_{e m p}(f)=\frac{1}{n} \sum_{i=1}^{n} 1_{\left\{f\left(X_{i}\right) \neq Y_{i}\right\}}
$$

- ERM induction principle: choose

$$
\hat{f}=\arg \min _{f \in \mathcal{F}} R_{e m p}(f)
$$

- Question: under which conditions is the algorithm consistent, i.e., $R\left(\hat{f}_{n}\right) \rightarrow \inf _{f \in \mathcal{F}} R(f)$ when $n \rightarrow \infty$?

Uniform law of large numbers

Let f^{*} s.t. $R\left(f^{*}\right)=\inf _{f \in \mathcal{F}} R(f)$. Then we have:

$$
\begin{aligned}
0 \leq R(\hat{f})-R\left(f^{*}\right) & \leq R(\hat{f})-R_{e m p}(\hat{f})+R_{e m p}\left(f^{*}\right)-R\left(f^{*}\right) \\
& \leq \sup _{f \in \mathcal{F}}\left(R(\hat{f})-R_{\text {emp }}(\hat{f})\right)+R_{e m p}\left(f^{*}\right)-R\left(f^{*}\right)
\end{aligned}
$$

The term $\left|R_{\text {emp }}\left(f^{*}\right)-R\left(f^{*}\right)\right|$ converges in probability to 0 , by the law of large numbers.

Equivalence between ERM and ULLN

Theorem 1. [Vapnik and Chervonenkis] One-sided uniform converge

 in probability,$$
\lim _{n \rightarrow+\infty} P\left\{\sup _{f \in \mathcal{F}}\left(R(f)-R_{e m p}(f)\right)>\epsilon\right\}=0
$$

for all $\epsilon>0$ is a necessary and sufficient condition for nontrivial consistency of empirical risk minimization.
(remains consistent even after the "best" functions have been removed).

When does one-sided ULLN hold?

For a given sample $S_{n}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ let $\mathcal{N}\left(\mathcal{F}, S_{n}\right)$ be the cardinality of \mathcal{F} when restricted to $\left(x_{1}, \ldots, x_{n}\right)$. Then Vapnik showed:
$P\left\{\sup _{f \in \mathcal{F}}\left(R(f)-R_{e m p}(f)\right)>\epsilon\right\} \leq 4 \exp \left(\log E\left[\mathcal{N}\left(\mathcal{F}, S_{n}\right)\right]-\frac{m \epsilon^{2}}{8}\right)$
If $\log E\left[\mathcal{N}\left(\mathcal{F}, S_{n}\right)\right]$ (the annealed entropy) grows sublinearly, one-sided ULLN holds.

Other capacity concepts: VC entropy

The VC entropy is $H_{\mathcal{F}}(n)=E \log \mathcal{N}\left(\mathcal{F}, S_{n}\right)$. The convergence

$$
\lim _{n \rightarrow+\infty} \frac{H_{\mathcal{F}}(n)}{n}=0
$$

is equivalent to uniform two-sided convergence of risk:

$$
\forall \epsilon>0, \quad \lim _{n \rightarrow+\infty} P\left\{\sup _{f \in \mathcal{F}}\left|R(f)-R_{\text {emp }}(f)\right|>\epsilon\right\}=0
$$

This implies consistency of ERM.

Other capacity concepts: annealed entropy

The annealed entropy is $H_{\mathcal{F}}^{a n n}(n)=\log E \mathcal{N}\left(\mathcal{F}, S_{n}\right)$ (larger than VC entropy by Jensen). The convergence

$$
\lim _{n \rightarrow+\infty} \frac{H_{\mathcal{F}}^{a n n}(n)}{n}=0
$$

is equivalent to exponentially fast convergence for the risk:

$$
P\left\{\sup _{f \in \mathcal{F}}\left|R(f)-R_{e m p}(f)\right|>\epsilon\right\} \leq 4 \exp \left(\left(\frac{H_{\mathcal{F}}^{a n n}(n)}{n}-\epsilon^{2}\right) \cdot m\right) .
$$

Other capacity concepts: growth function

The shattering coefficient is $\mathcal{N}(\mathcal{F}, n)=\max _{S_{n}} \mathcal{N}\left(\mathcal{F}, S_{n}\right)$, and the growth function is $G_{\mathcal{F}}(n)=\log \mathcal{N}(\mathcal{F}, n)$. The convergence

$$
\lim _{n \rightarrow+\infty} \frac{G_{\mathcal{F}}(n)}{n}=0
$$

is equivalent to exponentially fast convergence of risk for all underlying distributions P.

VC dimension

The growth function obviously satisfies $G_{\mathcal{F}}(n) \leq n \log (2)$. The VC dimension h is the maximum number of points which can be shattered (separated in 2^{n} ways). Then the following holds:

$$
G_{\mathcal{F}}(n) \leq h\left(\log \frac{n}{h}+1\right) .
$$

Therefore:

- the growth function increases linearly up to $n=h$
- then in increases logarithmically for $n>h$

Example: VC dimension of hyperplane classifiers

For hyperplanes in dimension N, the VC dimension is $h=N+1$. em This is not interesting in large dimensions

VC dimension of large margin hyperplane classifiers

The set of hyperplanes classifiers with margin at least γ has a VC dimension upper bounded by

$$
h \leq \frac{R^{2}}{M^{2}}
$$

where R is the radius of the smallest sphere containing all x.

Conclusion about SLT

- Learning algorithms can learn if the capacity of the set of classifiers they produce is controlled
- Vapnik introduced a simple measure of capacity, the VC dimension, whose finiteness is equivalent to the consistency of the learning algorithm
- For hyperplane classifiers, the VC dimension can be controlled irrespective of the dimension of the space, by controlling the margin ... no curse of dimensionality?

Part 2

Support Vector Machines (SVM)

Linear classifiers for separable data

The width of the tube is $\frac{1}{\|w\|}$. It should be as large a possible, according to SLT

Maximum margin hyperplane

We should maximize $\|w\|$ under the constraints:

$$
\begin{cases}w \cdot x_{i}+b \geq 1 & \text { if } y_{1}=1 \\ w \cdot x_{i}+b \leq-1 & \text { if } y_{1}=-1\end{cases}
$$

which can be rewritten as: minimize $\|w\|^{2}$ under the constraints

$$
\forall i \in\{1, \ldots, n\}, \quad y_{i}\left(w \cdot x_{i}+b\right)-1 \geq 0
$$

This is a classical quadratic program.

Dual formulation

We introduce Lagrange multipliers $\alpha_{1}, \ldots, \alpha_{n}$ and consider the Lagrangian:

$$
L(w, b, \alpha)=\frac{1}{2} w^{\prime} w-\sum_{i=1}^{n} \alpha_{i}\left[y_{i}\left(w \cdot x_{i}+b\right)-1\right] .
$$

The dual function is $L(\alpha)=\inf _{w, b} L(w, b, \alpha)$ can be computed by differentiating the Lagrangian. This leads to the dual problem: maximize

$$
L(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\sum_{i, j=1}^{n} y_{i} y_{j} \alpha_{i} \alpha_{j} x_{i} x_{j},
$$

under the constraints $\alpha \geq 0$ and $\sum_{i=1}^{n} y_{i} \alpha_{i}=0$.

Interpretation of Lagrange multipliers

KKT condition:

- $\alpha_{i}>0 \Longrightarrow y_{i}\left(w \cdot x_{i}+b\right)=1$: support vectors
- $\alpha_{i}=0 \Longrightarrow y_{i}\left(w \cdot x_{i}+b\right) \geq 1:$ useless vectors

Linear soft margin SVM

Introduce slack variables $\zeta_{1}, \ldots, \zeta_{n}$ to allow misclassification.
Trade-off between large margin and misclassification.

Linear soft margin SVM

Maximize

$$
\|w\|^{2}+C \sum_{i=1}^{n} \zeta_{i}
$$

under the constraints:

$$
\left\{\begin{array}{l}
\zeta_{i} \geq 0, \\
y_{i}\left(w \cdot x_{i}+b\right) \geq 1-\zeta_{i},
\end{array}\right.
$$

for $i=1, \ldots, n$.

Dual formulation of soft margin

Expressing the Lagrangian leads to the dual problem:maximize

$$
L(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\sum_{i, j=1}^{n} y_{i} y_{j} \alpha_{i} \alpha_{j} x_{i} x_{j},
$$

under the constraints:

$$
\left\{\begin{array}{l}
0 \leq \alpha_{i} \leq C, \forall i \in\{1, \ldots, n\}, \\
\sum_{i=1}^{n} y_{i} \alpha_{i}=0
\end{array}\right.
$$

Interpretation of the dual variable

SVM classification

w is recovered from α by:

$$
w=\sum_{i=1}^{n} \alpha_{i} x_{i} .
$$

The classification of a new observation $x \in \mathcal{X}$ is based on the sign of:

$$
f(x)=w \cdot x+b(\alpha)=\sum_{i=1}^{n} \alpha_{i} x_{i} \cdot x+b(\alpha)
$$

Only support vectors are used!

Conclusion about linear SVM

- SVM find a trade-off between large margin and misclassification
- The dual formulation is a quadratic program (convex functional, linear constraints) easy to solve
- The final classifier only uses support vectors (compression..)

Part 3

Nonlinear SVM and kernels

Feature space

$\Phi: \mathcal{X} \rightarrow \mathbb{R}^{N}$ a non-linear mapping. SVM can be performed in the feature space.

Kernel function

Let $K: \mathcal{X}^{2} \rightarrow \mathbb{R}$ be defined by:

$$
\forall\left(x, x^{\prime}\right) \in \mathcal{X}^{2}, \quad K\left(x, x^{\prime}\right)=\Phi(x) \cdot \Phi\left(x^{\prime}\right) .
$$

K is called a kernel function.

Kernel trick

The function to minimize is:

$$
\begin{aligned}
L(\alpha) & =\sum_{i=1}^{n} \alpha_{i}-\sum_{i, j=1}^{n} y_{i} y_{j} \alpha_{i} \alpha_{j} \Phi\left(x_{i}\right) \Phi\left(x_{j}\right) \\
& =\sum_{i=1}^{n} \alpha_{i}-\sum_{i, j=1}^{n} y_{i} y_{j} \alpha_{i} \alpha_{j} K\left(x_{i}, x_{j}\right)
\end{aligned}
$$

The classifier is:

$$
f(x)=\sum_{i=1}^{n} \alpha_{i} \Phi\left(x_{i}\right) \cdot \Phi(x)+b(\alpha)=\sum_{i=1}^{n} \alpha_{i} K\left(x_{i}, x\right)+b(\alpha) .
$$

Kernel trick

No Φ anymore! Only $K(.,$.$) is used!$
SVM works implicitly in the feature space through the kernel function.

Kernels are often more convenient to work with than explicit Φ !

Kernel examples

- Polynomial:

$$
K\left(x, x^{\prime}\right)=\left(x \cdot x^{\prime}\right)^{d}
$$

- Gaussian radial basis function

$$
K\left(x, x^{\prime}\right)=\exp \left(\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)
$$

- Sigmoid

$$
K\left(x, x^{\prime}\right)=\tanh \left(\kappa x \cdot x^{\prime}+\theta\right)
$$

How to make a kernel?

Theorem 2. [Mercer] A function $K: \mathcal{X}^{2} \rightarrow \mathbb{R}$ is a valid kernel if and only if, for any $p \in \mathbb{N}$ and $\left(x_{1}, \ldots, x_{p}\right)$, the Gram matrix:

$$
K_{x, x^{\prime}}=K\left(x, x^{\prime}\right)
$$

is positive semidefinite.
Many similarity functions on general object spaces are valid kernels! The validity of a candidate kernel can easily be checked!

Kernel engineering

Design a kernel for a particular application, by including some prior knowledge (invariance,...)

- Translation and rotation invariance for images in OCR
- Periodicity in coding DNA sequences
- Sharing of rare features

More kernel tricks

Any algorithm which can be expressed only in terms of dot product can be kernelized!

- kernel-PCA
- kernel-CCA
- kernel-ICA
- kernel-clustering
- kernel-Fisher discriminant

Conclusion about kernels

- Like other kernel methods, SVM works implicitly in a highdimensional feature space
- Overfitting is avoided thanks to the choice of large margin
- Computation is tractable thanks to the kernel trick
- Good performance in real-wold applications

Part 4

Applications in bioinformatics

Microarray data analysis

- Gene functional classification: Brown et al. (2000), Pavlidis et al. (2001)
- Tissue classification: Mukherje et al. (1999), Furey et al. (2000), Guyon et al. (2001)

Proteins

- Family prediction: Jaakkoola et al. (1998)
- Fold recognition : Ding et al. (2001)
- Protein-protein interaction prediction: Bock et al. (2001)
- Secondary structure prediction: Hua et al. (2001)
- Subcellular localization prediction: Hua et al. (2001)

New kernels for bioinformatics

- Fisher kernel (Jaakkoola and Haussler 1998)
- Convolution kernels (Haussler 99, Watkins 1999)
- Kernel for translation initiation site (Zien et al. 2000)
- String kernel (Lodhi et al. 2000)
- Spectrum kernel (Leslie et al., 2002)
- Interpolated kernel (Vert 2002)

More kernel methods and exotic kernels

Graph-driven feature extraction from microarray data (Vert and Kanehisa, 2002)

Gene network

Expression profiles

Graph-driven features extraction

- Diffusion kernel $K_{1}=\exp (-\tau L)$, where $L=D-A$ is the Laplace matrix of the graph, to encode the graph topology.
- Linear kernel K_{2} between the expression profiles.
- Perform kernel-CCA to extract correlations between the feature spaces of K_{1} and K_{2}, i.e., between the topology of the graph and the expression profiles

Conclusion

Conclusion

- Sound theoretical foundations and good results in real-world applications
- Modularity: any kernel works with any kernel method
- New possibility: engineer kernel for strings, graphs, genes, molecules,...
- More info: http://www.kernel-machines.org

