Data mining the proteome in reproducible kernel Hilbert spaces

Jean-Philippe Vert

> Bioinformatics Center, Kyoto University, Japan Jean-Philippe.Vert@mines.org

Research Institute for Mathematical Sciences, Kyoto University, Japan, July 12, 2002.

Outline

1. The proteome
2. DNA chips, pathway databases...
3. Kernels and RKHS
4. Example: correlation between microarray data and gene network

Part 1

Proteomics: a primer

A protein (glutamine synthetase)

The central dogma : DNA \rightarrow RNA \rightarrow protein

The proteome

- 6,000 genes in the budding yeast, 30-100,000 genes in humans
- complex interactions
- complex regulation
- proteins have many functions: structural, functional, ...

Proteins can catalyze chemical reactions

Challenges in proteomics

- Structure, functions of each gene?
- Genetic regulation? System bahaviour?
- Biology is becoming quantitative : need of mathematical frameworks to manipulate biological concepts.

Part 2

Characterizing the proteome: DNA chips, pathways etc...

Microarrays (DNA chips)

(from Brown and Botstein, Nature Genetics, 1999)

Microarrays (ctd.)

- can monitor the quantity of RNA for several thousands genes simultaneously
- quantity of data increases very fast
- each gene is characterized by an expression profile

Networks of genes

- genes are vertices of a graph
- protein interaction network (recent technology: yeast two-hybrid system...)
- pathway network: two genes are linked when they catalyse two successive reactions

Protein interaction network

(from Jeong et al., Nature 2001)

What is a gene?

- a sequence of letters: nucleotides (4 letters) or amino-acids (20 letters)
- a 3D structure
- a node in a network (protein interactions network, metabolic pathway...)
- an expression profile...

Question

How to represent the various informations about genes in a coherent and useful mathematical framework?

Part 3

Kernels and RKHS (Reproducible Kernel Hilbert Space)

Kernels on finite space

Let \mathcal{X} a finite space (set of genes).

A kernel is a mapping $K: \mathcal{X}^{2} \rightarrow \mathbb{R}$ such that the Gram matrix:

$$
K_{x, x^{\prime}}=K\left(x, x^{\prime}\right)
$$

is positive semidefinite (all eigenvalues are ≥ 0).
(Intuition: $K(.,$.$) measures the similarity between two genes).$

Mercer kernel map

A kernel K can be expressed as an inner product in a feature space:

$$
K=\sum_{i=1}^{n} \lambda_{i} \phi_{i} \phi_{i}^{\prime},
$$

where $\phi_{i}=\left(\phi_{i}\left(x_{1}\right), \ldots, \phi_{i}\left(x_{n}\right)\right)$ are eigenvectors.
Let

$$
\phi(x)=\left(\sqrt{\lambda_{1}} \phi_{1}(x), \ldots, \sqrt{\lambda_{n}} \phi_{n}(x)\right)^{\prime} .
$$

Then $K\left(x_{i}, x_{j}\right)=\phi\left(x_{i}\right)^{\prime} \phi\left(x_{j}\right)$.

RKHS

An other useful way to express a kernel as an inner product. Consider the mapping $\psi: \mathcal{X} \rightarrow \mathbb{R}^{\mathcal{X}}$ defined by:

$$
\psi(x)=K(x, .) .
$$

and let $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$ be the linear span of $\{K(x,),. x \in \mathcal{X}\}$.

RKHS (ctd.)

Any function $f \in \mathcal{H}$ can be expanded in the eigenvector basis of K as:

$$
f=\sum_{i=r+1}^{n} a_{i} \phi_{i} .
$$

where r is the multiplicity of 0 as eigenvalue.
Define an inner product in \mathcal{H} as:

$$
\left\langle\sum_{i=r+1}^{n} a_{i} \phi_{i}, \sum_{i=r+1}^{n} b_{i} \phi_{i}\right\rangle_{\mathcal{H}} \triangleq \sum_{i=r+1}^{n} \frac{a_{i} b_{i}}{\lambda_{i}} .
$$

RKHS (ctd.)

Then the space \mathcal{H} endowed with the inner product $<, . .>_{\mathcal{H}}$ is a Euclidean space, called Reproducible kernel Hilbert space.

Reproducing property:

$$
\left\langle K\left(x_{i}, .\right), K\left(x_{j}, .\right)\right\rangle=K\left(x_{i}, x_{j}\right)
$$

hence the map $x \mapsto K(x,$.$) is a valid feature space representation.$
(Proof: write $K(x,)=.\sum_{i=1}^{n} \lambda_{i} \phi_{i}(x) \phi($.$) , and use the definition of$ the inner product with $a_{i}=\lambda_{i} \phi_{i}(x)$ and $\left.b_{i}=\lambda_{i} \phi_{i}\left(x^{\prime}\right)\right)$

Dual representation in RKHS

Any function $f \in \mathcal{H}$ can be expressed in a dual form:

$$
f(.)=\sum_{i=1}^{n} \alpha_{i} K\left(x_{i}, .\right)
$$

α is the dual coordinate of $f=K \alpha$. The inner product in \mathcal{H} can be easily expressed with the dual coordinates:

$$
<f, g>_{\mathcal{H}}=\sum_{i, j=1}^{n} \alpha_{i} \beta_{j} K\left(x_{i}, x_{j}\right)=\alpha^{\prime} K \beta .
$$

What is the link between RKHS and the proteome?

- A kernel $K\left(x, x^{\prime}\right)$ acts as a similarity measure
- Different representation of the genes (sequences, nodes of a graph, microarray expression) lead to different notions of similarity
- These similarity can be encoded as different kernel functions
- Linear algorithms can be performed implicitly in the feature space.
- The metrics of the RKHS can correspond to useful properties

Metrics in RKHS

Let $f \in \mathcal{H}$ be decomposed in the basis of eigenvectors of K :

$$
f=\sum_{i=r+1}^{n} a_{i} \phi_{i}
$$

The norm is given by:

$$
\|f\|_{\mathcal{H}}^{2}=\sum_{i=r+1}^{n} \frac{a_{i}^{2}}{\lambda_{i}} .
$$

A large norm means that f has large components with respect to the eigenvectors with small eigenvalues.

Metrics in RKHS (ctd.)

Example: in the continuous case $\left(\mathcal{X}=\mathbb{R}^{d}\right)$ the eigenvectors of the Gaussian radial basis kernel:

$$
K\left(x, x^{\prime}\right)=\exp \left(-\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)
$$

are the Fourier basis function, and the norm in \mathcal{H} is a smoothing functional:

$$
\|f\|_{\mathcal{H}}=\int_{\mathbb{R}^{d}} e^{\frac{\sigma^{2}}{2}\|\omega\|^{2}}|\hat{f}(\omega)|^{2} d \omega .
$$

Part 3

Example: correlation between microarray data and gene network

The problem

Are there "correlations"?

The approach

An interesting feature $f: \mathcal{X} \rightarrow \mathbb{R}$ should be:

- smooth with respect to the graph topology
- capture a lot of variations in the profiles (i.e., be strongly correlated with some the furst principal components)

This can be translated as a canonical correlation analysis (CCA) problem between two RKHS associated with two kernels.

Graph kernel

For a graph let:

- A be the adjacency matrix $\left(A_{i, j}=1\right.$ is $x_{i} \sim x_{j}, 0$ otherwise $)$
- D be the diagonal matrix of vertex degrees
- $L=D-A$ be the Laplacian matrix
L can be thought as a discretized version of the continuous
Laplacian $\Delta=\sum \frac{\partial}{\partial x_{i}}$.

Graph kernel (ctd.)

Eigenvectors of L form a Fourier basis of the functions on the vertices of the graph. Frequency increases with the eigenvalue.

By similarity with the continuous case, let

$$
K=\exp (-\tau L)
$$

be the diffusion kernel. Its eigenvectors are the Fourier basis, the eigenvalues quickly decrease when the frequency increases. The corresponding norm $\|f\|_{\mathcal{H}}$ is a smoothing functional.

Example of a graph kernel (1)

$$
L=\left(\begin{array}{ccccc}
1 & 0 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
-1 & -1 & 3 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 1
\end{array}\right)
$$

Example of a graph kernel (2)

$$
K=\exp (-L)=\left(\begin{array}{lllll}
0.49 & 0.12 & 0.23 & 0.10 & 0.03 \\
0.12 & 0.49 & 0.23 & 0.10 & 0.03 \\
0.23 & 0.23 & 0.24 & 0.17 & 0.10 \\
0.10 & 0.10 & 0.17 & 0.31 & 0.30 \\
0.03 & 0.03 & 0.10 & 0.30 & 0.52
\end{array}\right)
$$

Microarray kernel

Consider the linear kernel $K\left(x, x^{\prime}\right)=e(x) . e\left(x^{\prime}\right)$, where $e(x) \in \mathbb{R}^{p}$ is the expression profile (centered).

The corresponding RKHS is the set of linear features:

$$
f_{v}(x)=e(x)^{\prime} v,
$$

for some $v \in \operatorname{span}(e(x), x \in \mathcal{X})$. The norm in the RKHS is $\|f\|_{\mathcal{H}}=\|v\|$, and the variance captured by f is

$$
V\left(f_{v}\right)=\frac{\sum_{x \in \mathcal{X}} f_{v}(x)^{2}}{\|v\|^{2}}=\frac{\left\|f_{v}\right\|_{L^{2}(\mathcal{X})}}{\left\|f_{v}\right\|_{\mathcal{H}}} .
$$

Combining both kernels

Let K_{1} be the graph kernel, and K_{2} be the linear kernel, with RKHS \mathcal{H}_{1} and \mathcal{H}_{2}

The problem can be stated as: find a pair of features $\left(f_{1}, f_{2}\right) \in \mathcal{H}_{1} \times \mathcal{H}_{2}$ such that:

- $\left\|f_{1}\right\|_{\mathcal{H}_{1}} /\left\|f_{1}\right\|_{L^{2}(\mathcal{X})}$ be small (f_{1} be smooth)
- $\left\|f_{2}\right\|_{\mathcal{H}_{2}} /\left\|f_{2}\right\|_{L^{2}(\mathcal{X})}$ be small $\left(f_{2}\right.$ capture a lot of variation in the profiles)
- f_{1} and f_{2} be as correlated as possible.

Problem formulation

This can be translated as follows:

$$
\max _{\left(f_{1}, f_{2}\right) \in \mathcal{H}_{1} \times \mathcal{H}_{2}} \frac{f_{1}^{\prime} f_{2}}{\sqrt{f_{1}^{\prime} f_{1}+\delta\left\|f_{1}\right\|_{\mathcal{H}_{1}}} \sqrt{f_{2}^{\prime} f_{2}+\delta\left\|f_{2}\right\|_{\mathcal{H}_{2}}}}
$$

where δ is a regularization parameter (trade-off correlation vs. smoothness / variation captured).

Dual formulation

Working with the dual coordinates in each feature space, this is equivalent to:

$$
\max _{(\alpha, \beta) \in\left(\mathbb{R}^{\mathcal{X}}\right)^{2}} \frac{\alpha^{\prime} K_{1} K_{2} \beta}{\left(\alpha^{\prime}\left(K_{1}^{2}+\delta K_{1}\right) \alpha\right)^{\frac{1}{2}}\left(\beta^{\prime}\left(K_{2}^{2}+\delta K_{2}\right) \beta\right)^{\frac{1}{2}}}
$$

which is equivalent to the generalized eigenvectors problem:

$$
\left(\begin{array}{cc}
0 & K_{1} K_{2} \\
K_{2} K_{1} & 0
\end{array}\right)\binom{\alpha}{\beta}=\rho\left(\begin{array}{cc}
K_{1}^{2}+\delta K_{1} & 0 \\
0 & K_{2}^{2}+\delta K_{2}
\end{array}\right)\binom{\alpha}{\beta}
$$

Experiment

- Gene network: genes are linked if they are known to catalyse two successive reactions (data available in Kyoto University's KEGG database, www.genome.ad.jp)
- Microarray data: 18 measures for all genes $(6,000)$ of the budding yeast S. Cerevisiae by Spellman et al. (public data), corresponding to a cell cyle after release of alpha factor.

1st CCA scores

Upper left expression

Average expression of the 50 genes with highest $s_{2}-s_{1}$.

Upper left genes

50 genes with highest $s_{2}-s_{1}$ belong to:

- Oxidative phosphorylation (10 genes)
- Citrate cycle (7)
- Purine metabolism (6)
- Glycerolipid metabolism (6)
- Sulfur metobolism (5)
- Selenoaminoacid metabolism (4) , etc...

Upper left genes

Upper left genes

Upper left genes

SELENOAMINO ACD METABOLISM

Lower right expression

Average expression of the 50 genes with highest $s_{2}-s_{1}$.

Lower right genes

- RNA polymerase (11 genes)
- Pyrimidine metabolism (10)
- Aminoacyl-tRNA biosynthesis (7)
- Urea cycle and metabolism of amino groups (3)
- Oxidative phosphorlation (3)
- ATP synthesis(3) , etc...

Lower right genes

Lower right genes

Lower right genes

UREA CYCLE AND METABOLISM OF AMINO GROUPS

Conclusion

Conclusion

- New technologies, new data: biology is changing quickly, need for new mathematical ideas (not only in statistics)
- We proposed a way to encode different kinds of informations about genes into kernel functions, and to work in the corresponding RKHS
- This is still an over-simplified model of the reality. More interesting structures might be imagined for the proteome (the idea of gene itself is more and more controversial...)
- Thank you!

