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3 days outline

• Day 1: Introduction to SVM

• Day 2: Applications in bioinformatics

• Day 3: Advanced topics and current research
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Today’s outline

1. Overview

2. Tissue classification

3. Gene function prediction

4. Protein localization

5. Secondary structure prediction

6. Protein superfamily prediction
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Overview
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Types of problems

• high dimensional (sequences, microarray data)

• very small or very large data sets

• heterogeneous but complementary data
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Types of data

• sequences (of nucleotides or amino-acids)

• microarray expression data

• SNPs

• phylogenetic profiles

• networks (protein interaction network, biochemical pathways)
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Tissue classification from
microarray data
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The problem

• Main goal : classification of tissue sample (e.g., type of cancer)

based on microarray data (diagnosis)

• Secondary goal: Find genes potentially responsible for the

classification (new insights for drug design)

• Few samples (20-30)

• Large dimensions (5,000 - 100,000)
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Data

• Leukemia dataset: two types of leukemia (47 ALL and 25 ALL),

7,129 gene expression, 38 training and 34 test samples

• Ovarian cancer dataset: 16 normal vs 15 cancerous tissues, 97,802

cDNA expression data.

• Colon tumor dataset: 40 tumor and 22 normal colon tissues, 6,500

gene expressions data
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Classification with SVM

• a linear kernel gives the best results.

• Almost perfect classification...

• ...but other algorithms perform well too (e.g., linear perceptron).
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Gene selection with the Fisher-like score

• (Mukherjee 1998, Furey 2000): genes are ranked according to

F (g) =
∣∣∣∣µ1(g)− µ−1(g)
σ1g + σ−1(g)

∣∣∣∣ .
• Performance seems to increase (with 50-1,000 genes selected)

• Few biological relevance: only 5 of the 10 best cDNA selected in

the ovarian cancer dataset are actually genes, 3 of which known to

be cancer related

• Good classification is still possible by removing up to the 1,000

best genes.
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Gene selection using SVM weights (Guyon et al.
2002)

• Genes are ranked based on their weight learned by a SVM

• Genes are removed one by one (or by chunks), and a SVM is re-run

at each iteration

• Classification improves with this gene selection procedure

• Selected genes (top 7) are known to be cancer-related.
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Conclusion

• diagnosis seems possible from microarray data but:

? larger-scale systematic experiments must be conducted (in the

ovarian datasets, the origin of the cell is largely different between

cancerous and normal cells..)

? SVM are “expected to have good performances when data

increase”, but currently perform at the same level as other

methods

• Gene selection and biological interpretation is still a research topic.

Encouraging results for SVM-based extraction methods.
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Gene function prediction from
microarray data
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The problem

• Goal : prediction of the function of uncharacterized genes

• Unbalanced problem: each class contains few genes compared to

the total number of genes (many negative examples)
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Data

• 2,467 genes of the yeast S. Cerevisiae with known function (in the

MIPS functional catalog)

• 79 expression measurement (Spellman et al., 1998).

• A small number of functional classes supposed to be correlated with

gene expression are selected (TCA cycle, cytoplasmic histones...).
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Results

• Linear, polynomial and Gaussian kernels

• Compared with Parzen windows, Fisher’s linear discriminant,

decision trees

• For all classes, SVM with Gaussian kernel performs best.
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Heterogeneous information (Pavlidis et al. 2001)

• Combining microarray data with phylogenetic profiles to improve

gene function prediction

• The phylogenetic profile of a gene is a vector.

? Each dimension corresponds to one fully sequenced organism

? Each value is − logE, where E is the lowest E-value reported by

BLAST in a search against complete genome

• Use 24 genomes

• Use polynomial kernels of degree 3.
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Integration of heterogeneous data

• Early: concatenate expression ~e and profile ~p into a single vector

• Intermediate: form a kernel by adding the microarray kernel and

the profile kernel:

K(g, g′) = K(~e,~e′) +K(~p, ~p′).

• Late: train two separate SVM, and add together the discriminant

functions



22

Results

• Intermediate integration gives the best results...

• but integration of both data types fails to improve performance on

4 out of 27 classes (when one data set performs poorly compared

to the other).

• feature selection (Fisher score based or SVM based) does not solve

this problem.

• The contribution of phylogenetic profiles seems to be their ability

to summarize sequence similarity (and not function conservation

during evolution).
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Conclusion

• SVM performs better than other classical learning algorithms.

• Interesting data integration by summing up two kernels (based on

the prior knowledge that correlations within each data set are more

relevant than between them).
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Protein subcellular localization
prediction
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The problem

Predict protein localization from sequence.
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Data

• 997 prokaryotic sequences divided in 3 classes: cytoplasmic (688),

periplasmic (202) and extracellular (107).

• 2427 eukaryotic sequences divided into 4 classes : nuclear (1097),

cytoplasmic (684), mitochondrial (321) and extracellular (325).
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SVM approach

• Each sequence is transformed into a 20-dimensional vector (amino-

acid composition)

• Multiclass problem: 1-versus-all approach

? One SVM is trained for each class

? predict the localization with highest output value



29

Results

• Best performance with Gaussian kernel.

• Comparison with other composition-based methods: (accuracy with

a Jackknife test):

Sequence NN Cov. Disc Markov SVM

Prok 81 86.5 89.1 91.4

Euk 66 73.0 79.4

• No comparison with signal recognition-based approach (PSort,

TargetP)
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Conclusion

• SVM perform better than other composition-based methods.

• Integration with signal recognition is possible and might increase

performance (K. Park, personal communication)
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Protein secondary structure
prediction
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The problem

Predict local structure from sequence (ex: prion)
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Data

• Non-redundant sets of proteins (RS126 and CB513) with known

3D structure.

• 3 states: helix, sheet and coil.
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SVM approach

• Multiple sequence alignment is performed for each sequence

(available in the HSSP database)

• Each position is encoded into a vector using a sliding window of

size l. Dimension: 21× l.

• Multiclass problem:

? 1-vs-all with maximum score

? all-vs-all + decision trees (hand-designed)

? all-vs-all + vote

? all-vs-all + NN
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Results

• 1-vs-all with max score gives the best result (can be improved by a

jury decision from all methods)

• SOV index on the RS126 dataset (sevenfold cross-validation):

Method PREDATOR DSC NNSSP PHD SVM

SVO (%) 70.3 71.1 72.7 73.5 74.6
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Protein fold prediction
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The problem

• Fold = common 3D pattern with the same major secondary

structure elements in the same arrangement and with the same

topological connections.

• Virtually no sequence similarity

• SCOP, CATH: more than 600 folds are known.

• Goal: predict the fold of a protein from its amino-acid sequence
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Approach

• Multiclass problem:

? 1-vs-all: predict all folds with positive scores (multiclass

prediction)

? Unique 1-vs-all: perform 1-vs-all, keep only folds with positive

score, and perform all-vs-all + vote on these folds only

? All-vs-all + vote.

• Compare NN and SVM.
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Protein vectorization

Each protein is transformed into a 125-dimensional vector by

extracting features from the amino-acid sequence:

• AA composition

• secondary structure

• hydrophobiciy

• Van der Waals volume

• Polarity

• Polarizability
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Results

• Prediction on 27 SCOP folds

• Both unique 1-vs-all and all-vs-all are significantly better than

1-vs-all (because false positive are removed).

• No clear difference between unique 1-vs-all and all-vs-all

• SVM significantly better than NN, and 10-100 times faster.
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Protein superfamily prediction
with the Fisher kernel
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The problem

• Goal: detecting remote protein homology (sequence similarities

that direct methods like BLAST don’t detect)

• Use the SCOP classification. A superfamily is a set of proteins with

a common 3D structure believed to have evolutionary relationship

(family ¡ superfamily ¡ fold)

• Other methods: BLAST, Fasta, PROBE, profiles, PFAM, HMMs,

PSI-BLAST

• None of this method is discriminative
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How to represent protein sequences as vectors?

• The Fisher score (Jaakkola et al.)

• Vector of pairwise similarities (Liao and Noble)
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The Fisher score of HMM

• A set of HMM for various families (e.g., immunoglobulins) is given

(using existing databases).

• Any HMM H defines the probability P (x|,H, θ) of any sequence x

(θ is the parameter vector which contains emission and transitions

probabilities).

• The Fisher score vector of a given sequence x is:

U(x) = ∇θ logP (x|,H, θ).
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Computing the Fisher score

For a classical HMM, let

• P (x|s, θ) = θx|s the probability of emitting a residue x while in

state s.

• P (s′|s.τ) = τs′|s the transition probability from the current state s

to the next state s′.

The probability of a sequence X = x1 . . . xn is:

P (X|θ, τ) =
∑

s1,...,sn

n∏
i=1

θxi|siτsi|si−1
.
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Computing the Fisher score (ctd.)

This probability can be computed by the classical forward-backward

algorithm, which also gives the posterior expectations ξ(x, s) of

visiting state x and generating residue x.

Derivating the preceding equation gives:

∂

∂θx|θ
logP (X|θ, τ) =

ξ(x, s)
θx|θ

− ξ(s).

The Fisher score vector can be computed as a by-product of the

forward-backward algorithm
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Using the Fisher score with SVM

HMM 

SVM

Sequence X

Fisher score U(X)
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Vector of similarities

• The similarity between any two protein sequences can be computed

using the Smith-Waterman algorithm.

• Let f(x, y) the log of the P-value of the Smith-Waterman score

between two sequence x and y.

• For a training set {x1, . . . , xn}, one can represent each sequence x

by the n-dimensional vector:

~Φ(xi) =

 f(x, x1)
...

f(x, xn)
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Comparison of both approaches

Positive training set HMM

Single protein

Positive and Negative
Training set

Single protein

Score Vector

Pairwise sequence
comparison

Pairwise
similarity
vector

E−M

Forward−Backward
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Results

Experiment: for 33 SCOP family, recognize the superfamily by only

using sequences in other families (simulate a remote protein

homology problem).

1. Pairwise similarity + SVM

2. Fisher score + SVM

3. PSI-Blast and SAM

4. Other direct homology-based methods enditemize
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Discussion and conclusion
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Summary

The examples we saw today all involve 4 important steps subject to

discussion:

• Expressing the problem as a binary classification problem

• Finding a vector representation of the objects to be classified

• Using an appropriate algorithm to learn the classification

• Evaluating the performance
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Conclusion

• SVM have been tested on many bioinformatics problems in recent

years

• In many cases SVM outperform other classification methods

• However comparison is sometimes difficult because not all problems

are stated as a clean machine learning problem

• Handling multiclass is still not trivial (not only for SVM)

• In today’s examples, SVM were only used as replacement for NN

or Fisher discriminant. See tomorrow for examples where SVM

provide more than that.


