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3 days outline

• Day 1: Introduction to SVM

• Day 2: Applications in bioinformatics

• Day 3: Advanced topics and current research
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Today’s outline

1. Kernel engineering

2. Other kernel methods

3. Example: graph-driven feature extraction from microarray data
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Part 1

Kernel engineering
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Remember the kernel

φ

K(x, x′) = ~Φ(x).~Φ(x′)
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Properties of the kernel

• A kernel is a similarity measure

• It defines the geometry of the feature space (lengths and angles)

• A function K(x, x′) is a kernel if and only if the following matrix

is symmetric positive definite (all eigenvalues are positive) for all

choices of (x1, . . . , xn):

K =

 K(x1, x1) K(x1, x2) . . .

K(x2, x1) K(x2, x2) . . .
... ... . . .


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3 ways to make kernels

• Define a set of features of interest, compute the feature vector

of every gene, and compute the dot products (see examples in

yesterday’s talk).

• Define a large set of features and find tricks to compute the dot

product implicitly (without computing the feature vectors)

• Start with a similarity measure you find pertinent (e.g., SW score)

and check that it is a kernel.
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Kernel engineering

Particular kernels can be imagined to include prior knowledge about:

• the types of data (vectors, sequences, graphs...)

• the problem at hand

into the geometry of the feature space.

This process is called kernel engineering
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Examples of kernel engineering

• Kernels for sequences based on common subsequences

• Kernel to recognize translation initiation site

• Convolution kernels

• Kernels built from Bayesian tree models

• Diffusion kernels on graphs
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Kernel engineering 1

Kernels for sequences based on
common subsequences
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Motivation

• Goal: define a kernel for variable-length sequences (useful to handle

bio-polymers)

• Intuition: two sequences are related when they share common

substrings or subsequences.
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Substrings

• A string s = s1, . . . , sp is a substring of a string x = x1, . . . , xn
(with n ≥ p) if the letters of s appear in the same order in x (gaps

allowed).

• The length l(s, x) of a substring s in a string x is the distance

between the first and the last letter in x

• Example: s = ofot is a substring of x = bioinformatics, with

length l(s, x) = 9.
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String matching kernel (Lohdi et al., 2002)

• The string matching kernel is defined by:

K(x, x′) =
∑

s common substring

λl(s,x)+l(s,x′),

where λ is a parameter.

• Two strings are similar when they share many common substrings

• The feature space is the space of all possible substrings
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Computation of the string matching kernel

• The dimension of the feature space is very large (number of possible

substrings), but...

• There exists a dynamic programming method to compute the kernel

K(x, x′) between any two sequences in O(|x||x′|n), where n is the

length of the substrings considered.

• Promising results on text classification
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Spectrum kernel (Leslie et al., 2002)

• Same idea, but gaps not allowed (common sub-blocks)

• Efficient implementation using a suffix tree

• Classification of a sequence x in O(|x|) using a sliding window

• Encouraging results on remote homology detection (superfamily

prediction): performs like PSI-Blast, a bit lower than SAM and

SVM+Fisher kernel
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Kernel engineering 2

Kernel to recognize translation
initiation site
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The problem

• Translation initiation sites (TIS) are the position in DNA where

regions coding for proteins start

• All coding sequences start with the start codon ATG

• Given a ATG in a DNA sequence, is it a TIS?
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Formulation

• Pick up a window of 200 nucleotides centered around the candidate

ATG

• Encode each nucleotide with a 5 bits word: 00001,. . . ,10000 for

A,C,G,T and unknown.

• Use this 1000 long bit vectors to train a SVM to predict whether

the central ATG corresponds to a TIS

• Which kernel to use?
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Polynomial kernels

K(~x, ~x′) = (~x.~x′)d

The corresponding feature space is made of Cdn−1 monomials

features of degree d

• d = 1: counts the number of common bits

• d = 2: counts the number of common pairs of bits (pairwise

correlations)

• etc...
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Locally improved kernels

• Intuition: while certain local correlations are typical for TIS,

dependencies between distant positions are of minor importance

or do not even exist. They only add noise to the feature space.

• At each sequence position, sequences can be compared locally using

a small window of length 2l+ 1 with inner correlations of up to d1

positions:

winp(x, x′) =

 +l∑
j=−l

wjmatchp+j(x, x′)

d1

.
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Locally improved kernels (ctd.)

• Add the contributions of all windows, and of correlations between

up to d2 windows:

K(x, x′) =

 n∑
p=1

winp(x, y)

d2
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Results

d2 > 1 (long-range correlations) does not improve performance

Method Overall error (%)

Neural network 15.4

Salzberg method 13.8

SVM, linear kernel 13.2

SVM, locally improved kernel (d1 = 4 , l = 4) 11.9
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Kernel engineering 3

Convolution kernels
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Intuition

• Many beautiful probabilistic models exist for biological sequences

(HMM)

• They involve observed data (the sequence x) and hidden variable

(the hidden states s)

• Intuition: two sequences x and x′ are similar if they are likely to

have the same hidden state sequence



27

References

• D. Haussler. Convolution kernels on discrete structures. , Technical report
UC Santa Cruz, 1999.

• C. Watkins. Dynamic alignment kernels. Proceedings of NIPS 1999.
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Convolution kernel for HMM

• Let p(x, s) the probability for the complete variable.

• The convolution kernel between two sequences x and x′ is defined

by:

K(x, x′) =
∑
s

p(s)p(x|s)p(x|s).

• It can be computed using a dynamic programming algorithm

(equivalent to pair HMM score, a variant of the Smith-Waterman

algorithm)
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Remarks

• It shows that natural ways to measure the similarity between

sequences (pair HMM score) are in fact kernels.

• Uses only the distribution p(x, s), and not the structure of the

parametric model (unlike the Fisher kernel).
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Kernel engineering 4

Kernel for strings based on rare
common substrings
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Motivations

• Goal: a kernel for fixed-length strings (sequence windows...)

• Intuition: two strings should get closer in the feature space when

they share rare common substrings

• Solution:

? Let p a probability distribution on the set of sequences of length

m (e.g., a position specific weight matrix)

? The kernel between two strings x and y is:

K(x, y) = p(x)p(y)
∑

s common substring

1
p(s)
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Properties of the string kernel

• K(., .) is a kernel

• Two strings get closer in the feature space when they share rare

common subparts

• Efficient computation: For sequences of length m, there is an

algorithm to compute the kernel with a complexity O(m) (even

though there are up to 2m common substrings)
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Application: SVM prediction of signal peptide
cleavage site (1)

Nascent protein

ER

Golgi

Signal peptide

mRNA

−Cell surface (secreted)
−Lysosome
−Plasma membrane

−Nucleus
−Chloroplast
−Mitochondrion
−Peroxisome
−Cytosole
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Signal peptides

Protein -1 +1

(1) MKANAKTIIAGMIALAISHTAMA EE...
(2) MKQSTIALALLPLLFTPVTKA RT...
(3) MKATKLVLGAVILGSTLLAG CS...

(1):Leucine-binding protein, (2):Pre-alkaline phosphatase,

(3)Pre-lipoprotein

• 6-12 hydrophobic residues (in yellow)

• (-3,-1) : small uncharged residues
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Experiment

• Challenge : classification of aminoacids windows, positive if

cleavage occurs between -1 and +1:

[x−8, x−7, . . . , x−1, x1, x2]

• 1,418 positive examples, 65,216 negative examples

• Classification by a weight matrix;

• Classification by a SVM + string kernel
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Result: ROC curves

False positive (%)
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Kernel engineering 5

Kernel for phylogenetic profiles
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Kernel for phylogenetic profiles

• Goal: a kernel for phylogenetic profiles (a string of bit which

indicates the presence or absence of an homolog in every fully

sequenced organism)

• Intuition: two genes should get closer in the feature space when

they are likely to have shared common evolution patterns

• Solution Create a simple probabilistic model for the transmission

of genes between species during evolution, and

K(x, y) =
∑

e evolution pattern

p(e)p(x|e)p(y|e)
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Evolution patterns
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Properties of the tree kernel

• K(., .) is a kernel

• Two profiles get closer in the feature space when they have shared

common evolution patterns with high probability

• Efficient computation: For profiles of length m, there is an

algorithm to compute the kernel with a complexity O(m) (even

though there is an exponential number of evolution patterns)
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Application: SVM function prediction from
phylogenetic profiles (ROC50 performance)

Functional class Dot kernel Tree kernel Difference

Amino-acid transporters 0.74 0.81 + 9%
Fermentation 0.68 0.73 + 7%
ABC transporters 0.64 0.87 + 36%
C-compound transport 0.59 0.68 + 15%
Amino-acid biosynthesis 0.37 0.46 + 24%
Amino-acid metabolism 0.35 0.32 - 9%

Tricarboxylic-acid pathway 0.33 0.48 + 45%
Transport Facilitation 0.33 0.28 - 15%
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Application: kernel PCA of phylogenetic profiles

Amino−acid transporters
Fermentation
ABC transporters
C−compound, carbonhydrate transport

PC1

PC2 PC4

PC3
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Kernel engineering 6

Diffusion kernels
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47

Making a kernel from a graph

• Goal: Suppose you can define binary relations between genes (e.g.,

protein interaction). How to define a kernel for genes which reflects

the topology of the graph?

• Intuition: Two nodes get closer in the feature space when there

are many short paths between them in the graph

• Solution Let L = D−A be the Laplacian matrix (D is the diagonal

degree matrix, A the adjacency matrix) For any λ > 0, the kernel

matrix is:

K = exp(−λL)
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Example of a graph kernel (1)

1

2

3

4

5

L =


−1 0 1 0 0
0 −1 1 0 0
1 1 −3 1 0
0 0 1 −2 1
0 0 0 1 −1


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Example of a graph kernel (2)

1

2

3

4

5

K = exp(−L) =


0.49 0.12 0.23 0.10 0.03
0.12 0.49 0.23 0.10 0.03
0.23 0.23 0.24 0.17 0.10
0.10 0.10 0.17 0.31 0.30
0.03 0.03 0.10 0.30 0.52


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Summary: Kernel engineering

• Kernels can be engineered to include some prior (biological)

knowledge in the geometry of the feature space

• The biological knowledge is an intuition about “when two objects

(genes) should be considered similar / close to each other”.

• Once engineered, the kernel can be used by any kernel method for

various purpose (sound mathematical framework)

• Kernel engineering is an active field of research currently
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Part 2

More kernel methods
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Overview

Suppose you are given a kernel K(., .). Then you can perform

various operations in the feature space without computing the image

Φg of each gene g:

• Compute the distance between any two genes, or between any gene

and the center of mass of the gene database

• Principal component analysis (PCA)

• Canonical correlation analysis (CCA)

• Classify the genes into classes (Support vector machines)
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Distance between two genes

g2φ(    )
0

φ(    )g1 d

d(g1, g2)2 = ‖Φg1 − Φg2‖2

= (Φg1 − Φg2) . (Φg1 − Φg2)

= Φg1.Φg1 + Φg2.Φg2 − 2Φg1.Φg2

d(g1, g2)2= K(g1, g1) +K(g2, g2)− 2K(g1, g2)
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Distance between a gene and the center of mass

m

φ(    )g1

Center of mass: ~m = 1
N

∑N
i=1 Φgi, hence:

‖Φg1 − ~m‖2 = Φg1.Φg1 − 2Φg1.~m+ ~m.~m

= K(g1, g1)− 2
N

N∑
i=1

K(g1, gi) +
1
N2

N∑
i,j=1

K(gi, gj)
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Example: greedy multiple alignment
(Gorodkin et al., GIW 2001)

• Use the SW score as a kernel for sequences (?)

• Compute the distance between each sequence and the center of

mass

• First align the sequences near the center of mass

• Then add sequences one by one to the multiple alignment, by

increasing distance from the center of mass
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Principal component analysis (PCA)

PC1PC2

Find the eigenvectors of the matrix:

K = (Φgi.Φgj)i,j=1...N

=
(
K(gi, gj)

)
i,j=1...N

Useful to represent the objects as small vectors (feature extraction).
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Canonical correlation analysis (CCA)

CCA2

CCA1

CCA1

CCA2

K1 and K2 are two different kernels for the same objects (genes).

CCA is performed by solving the generalized eigenvalue problem:(
0 K1K2

K2K1 0

)
~ξ = ρ

(
K2

1 0
0 K2

2

)
~ξ

Useful to find correlations between different representations of the

same objects
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More kernel methods

• Any algorithm can be kernelized if it can be expressed in terms of

inner product

• The library of kernel methods include SVM, kernel-PCA, kernel-

CCA, kernel-Fisher discriminant, kernel-ICA, kernel-clustering, ...

• Modularity : any kernel can be used with any kernel method
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Part 3

Example: graph-driven features
extraction from microarray data



60

The problem

g8

g3 g7

g6
g5g4

g1

g6

g3
g8

g7
g5
g4

g1

g2

Gene network Expression profiles

g2

Are there “correlations”?
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Approach

• From the microarray data build a kernel K1 for genes using a linear

kernel

• Use the gene network to build a kernel K2 for genes using a

diffusion kernel

• Perform a kernel CCA between K1 and K2 to extract correlations

between the corresponding feature spaces
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Data

• Gene network: genes are linked if they are known to catalyze two

successive reactions (data available in Kyoto University’s KEGG

database, www.genome.ad.jp)

• Microarray data: 18 measures for all genes (6,000) of the budding

yeast S. Cerevisiae by Spellman et al. (public data), corresponding

to a cell cycle after release of alpha factor.



64

1st CCA scores
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Upper left expression

Time
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Average expression of the 50 genes with highest s2 − s1.
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Upper left genes

50 genes with highest s2 − s1 belong to:

• Oxidative phosphorylation (10 genes)

• Citrate cycle (7)

• Purine metabolism (6)

• Glycerolipid metabolism (6)

• Sulfur metabolism (5)

• Selenoaminoacid metabolism (4) , etc...
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Upper left genes
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Upper left genes
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Upper left genes
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Lower right expression
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Time

Average expression of the 50 genes with highest s2 − s1.
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Lower right genes

• RNA polymerase (11 genes)

• Pyrimidine metabolism (10)

• Aminoacyl-tRNA biosynthesis (7)

• Urea cycle and metabolism of amino groups (3)

• Oxidative phosphorylation (3)

• ATP synthesis(3) , etc...
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Lower right genes
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Lower right genes
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Lower right genes
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Why it works (advanced)

• The diffusion kernel K1 induces a reproducible Kernel Hilbert space

of real-valued functions on genes whose norm ||f ||H1 is a smoothing

functional

• The linear kernel K2 induces a RKHS whose norm ||f ||H2 is a

relevance functional

• The CCA algorithm extract features f1 and f2 which maximize a

trade-off between correlation and smoothness / relevance:

max
(f1,f2)∈H1×H2

f ′1f2√
f ′1f1 + δ||f1||H1

√
f ′2f2 + δ||f2||H2
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Conclusion
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Conclusion

• We saw yesterday that SVM can be used as replacement of other

methods and give good results in real-world applications

• We saw today that SVM can be adapted much more general

situations:

? by engineering ingenious kernels

? by using various kernel methods

• This research is still in its infancy!


