Extracting correlations between pathways and microarray data

Jean-Philippe Vert

Bioinformatics Center, Kyoto University, Japan Jean-Philippe.Vert@mines.org

4th Biopathways Consortium Meeting, August 1-2, 2002, Edmonton, Canada

Outline

- 1. Problem formulation
- 2. An approach using kernel methods
- 3. Experimental results

Problem formulation

The problem

Gene network

Expression profiles

Are there "correlations"?

What is a correlation?

- "Patterns" of expression shared by genes closed to each others on the network
- Examples:
 - Activation of a pathway: enzymes which catalyze successive reactions might share a particular expression pattern
 - Formation of a protein complex: the co-expression of several genes closed to each other on a protein interaction network is required.

Pattern of expression

• An expression pattern is a particular expression profile.

• The correlation between a pattern and a gene expression profile quantifies how each gene shares the profile.

Smoothness of a pattern

• A pattern whose correlation varies smoothly with respect to the graph topology is an interesting pattern.

Part 2

An approach using kernel methods

Overview

- We have developped an algorithm to extract expression patterns smooth with respect to a network topology
- Based on recent developments in the field of kernel methods (SVM...)
- Input: a gene network and a set of expression profiles
- Output: a set of interesting expression patterns, and the groups of genes which share it or not

The idea

Kernel

For any mapping $\Phi(.)$ from the set of genes to a Euclidean space \mathbb{R}^n , the kernel K(g,g') between two genes is the inner product between their images:

 $K(g,g') = \Phi(g).\Phi(g').$

Diffusion kernel (Kondor and Lafferty, 2002)

- For a given graph, there is a natural mapping Φ to a (high dimensional) Euclidean space which conserves the topology of the graph.
- The corresponding kernel K(g,g') between any two genes can be computed by:

 $K = \exp(D - A),$

where A is the adjacency matrix and D the degree diagonal matrix

Example of a diffusion kernel (1)

Example of a graph kernel (2)

0.03 0.10 0.30

0.52

0.03

$$K = \exp(-L) =$$

Expression kernel

- Expression profiles are vectors
- The inner product between two profiles is a valid kernel

Kernel CCA (Bach and Jordan, 2002)

- Let K_1 be the graph kernel, and K_2 be the expression kernel (corresponding to mapping the genes to two Euclidean spaces)
- Finding directions with large correlations is equivalent to solving the generalized eigenvalue problem:

$$\begin{pmatrix} 0 & K_1 K_2 \\ K_2 K_1 & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \rho \begin{pmatrix} K_1^2 + \delta K_1 & 0 \\ 0 & K_2^2 + \delta K_2 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

Experimental results

Data

- Gene network: genes are linked if they are known to catalyse two successive reactions (data available in Kyoto University's KEGG database, www.genome.ad.jp)
- Microarray data: 18 measures for all genes (6,000) of the budding yeast S. Cerevisiae by Spellman et al. (public data), corresponding to a cell cyle after release of alpha factor.

1st CCA scores

Upper left expression

Average expression of the 50 genes with highest $s_2 - s_1$.

50 genes with highest $s_2 - s_1$ belong to:

- Oxidative phosphorylation (10 genes)
- Citrate cycle (7)
- Purine metabolism (6)
- Glycerolipid metabolism (6)
- Sulfur metobolism (5)

• Selenoaminoacid metabolism (4), etc...

Lower right expression

Average expression of the 50 genes with highest $s_2 - s_1$.

- RNA polymerase (11 genes)
- Pyrimidine metabolism (10)
- Aminoacyl-tRNA biosynthesis (7)
- Urea cycle and metabolism of amino groups (3)
- Oxidative phosphorlation (3)
- ATP synthesis(3) , etc...

RNA polymerase II (Saccharomyces cerevisiae)

Eukaryotic Pol II

B2					
B1	B3	B4	B5	B6	B7
	B8	B9	B10	B11	B12

Eukaryotic Pol III

C2				
C1	C3	C4	C5	C11
	C19	C25	C31	C34

Eukaryotic Pol I

Conclusion

Conclusion

- A method to extract correlations between microarray data and a gene network
- Accepts noise and errors in the data
- Can be generalized to other types of information by using other kernels (e.g., string kernels to find correlations with sequences)
- More details: "Graph-driven feature extraction from microarray data", J.-P. Vert and M. Kanehisa, Preprint June 2002.