Extracting active metabolic pathways from gene expression data

Jean-Philippe Vert

Bioinformatics group Ecole des Mines de Paris

Jean-Philippe.Vert@mines.org

NIPS Bioinformatics workshop, December 12, 2002, Whistler, Canada.

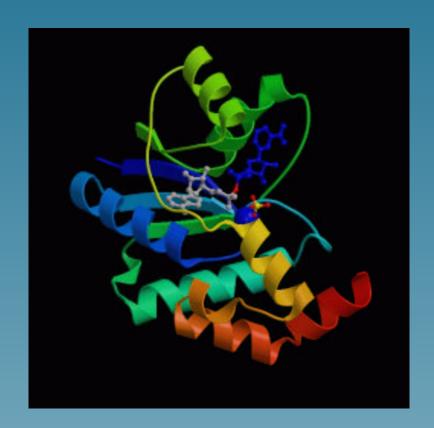
Overview

- 1. Problem Formulation
- 2. An approach using RKHS
- 3. Experimental results

Part 1

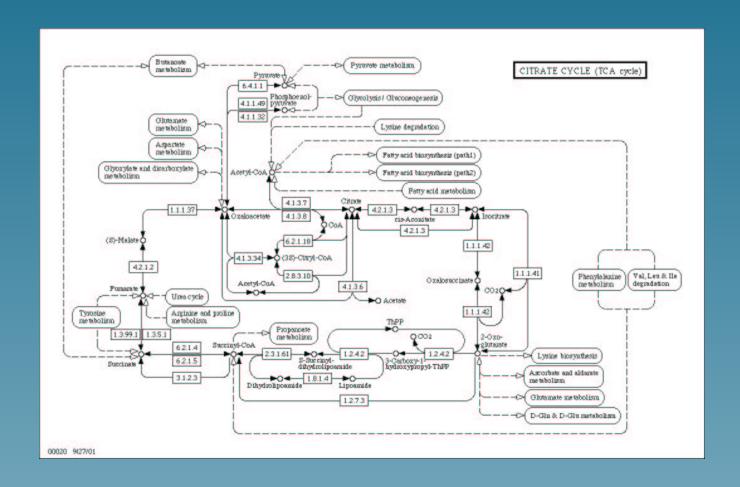
Problem formulation

Genes encode proteins which can catalyse chemical reations



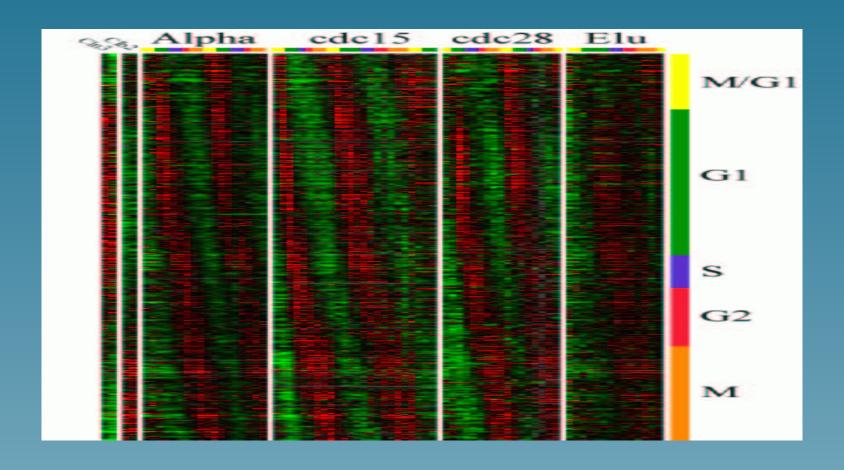
Nicotinamide Mononucleotide Adenylyltransferase With Bound Nad+

Chemical reactions are often parts of pathways



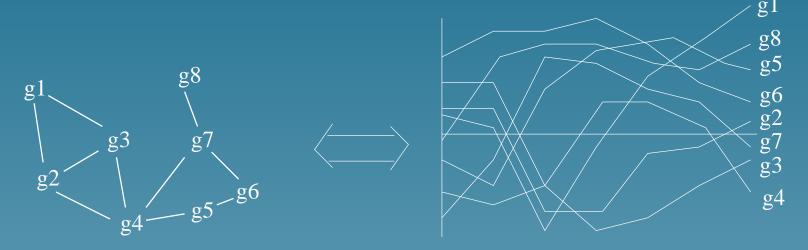
From http://www.genome.ad.jp/kegg/pathway

Microarray technology monitors RNA quantity



(From Spellman et al., 1998)

Comparing gene expression and protein network

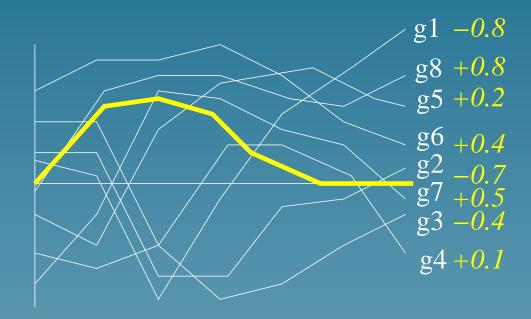


Gene network

Expression profiles

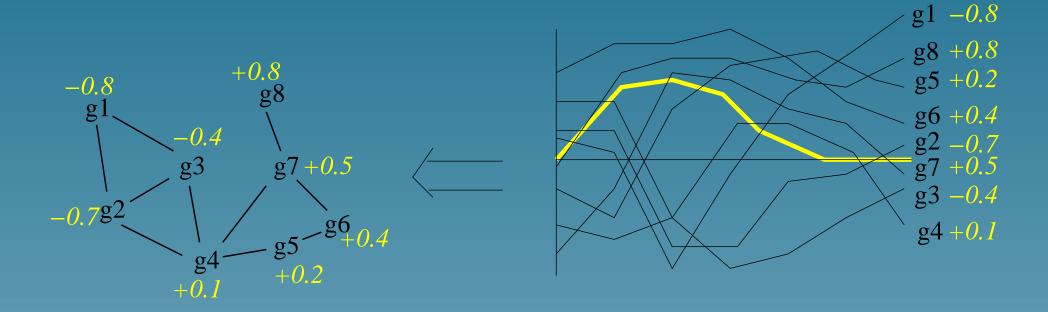
Are there "correlations"?

Pattern of expression



 In yellow: a candidate pattern, and the correlation coefficient with each gene profile

Pattern smoothness



 The correlation function with interesting patterns should vary smoothly on the graph

Pattern relevance

- Interesting patterns involve many genes
- The projection of profiles onto an interesting pattern should capture
 a lot of variations among profiles
- Relevant patterns can be found by PCA

Problem

Find patterns of expression which are simultaneously

- smooth
- relevant

Part 3

An approach using RKHS

Kernels and RKHS

- ullet A kernel K(x,y) on the set of genes ${\mathcal X}$ is a symetric positive definite function
- A kernel defines a Hilbert space on the set of functions:

$$H = \operatorname{span}\{K(x,.), x \in \mathcal{X}\} \subset \{f : \mathcal{X} \to \mathbb{R}\}$$

called reproducible kernel Hilbert space (RKHS).

• The norm $||f||_H$ can have useful interpretation for particular kernels

Pattern relevance

- Let e(x) the profile of gene x
- Let $K_1(x,y) = e(x).e(y)$ be the linear kernel, with RKHS H_1 .
- The norm $||.||_{H_1}$ is a relevance functional: the relevance of $f \in H_1$ increases when the following decreases:

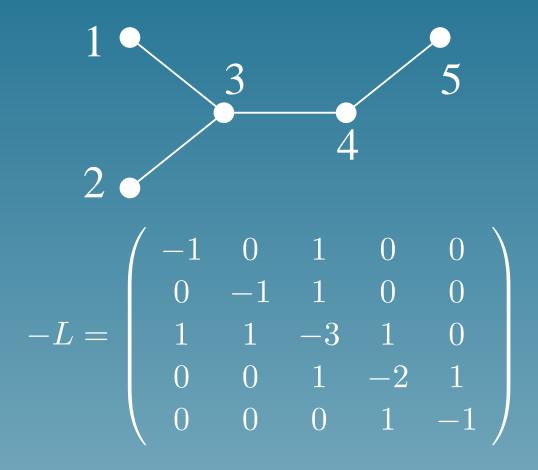
$$\frac{||f||_{H_1}}{||f||_{L_2}}$$

Pattern smoothness

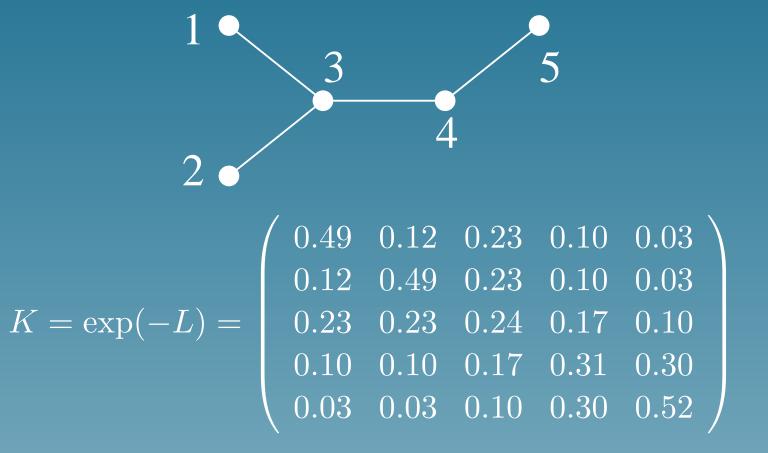
- Let $K_2(x,y)$ be the diffusion kernel obtained from the gene network, with RKHS H_2 .
- It can be considered as a discretized version of a Gaussian kernel (solving the heat equation with the graph Laplacian)
- The norm $||.||_{H_2}$ is a smoothness functional: the smoother a function $f: \mathcal{X} \to \mathbb{R}$, the larger the function:

$$\frac{||f||_{H_1}}{||f||_{L_2}}$$

Diffusion kernel (Kondor and Lafferty, 2002)



Diffusion kernel (Kondor and Lafferty, 2002)



Problem reformulation

Find a linear function f_1 and a function f_2 such that:

- lacksquare f_1 be relevant : $||f_1||_{L^2}/||f_1||_{H_1}$ be large
- f_2 be smooth : $||f_2||_{L^2}/||f_2||_{H_2}$ be large
- f_1 and f_2 be correlated :

$$\frac{f_1.f_2}{||f_1||_{L^2}||f_2||_{L^2}}$$

be large

Problem reformulation (2)

The three goals can be combined in the following problem:

$$\max_{f_1, f_2} \frac{f_1.f_2}{\left(||f_1||_{L^2}^2 + \delta||f_1||_{H_1}^2\right)^{\frac{1}{2}} \left(||f_2||_{L^2}^2 + \delta||f_2||_{H_2}^2\right)^{\frac{1}{2}}}$$

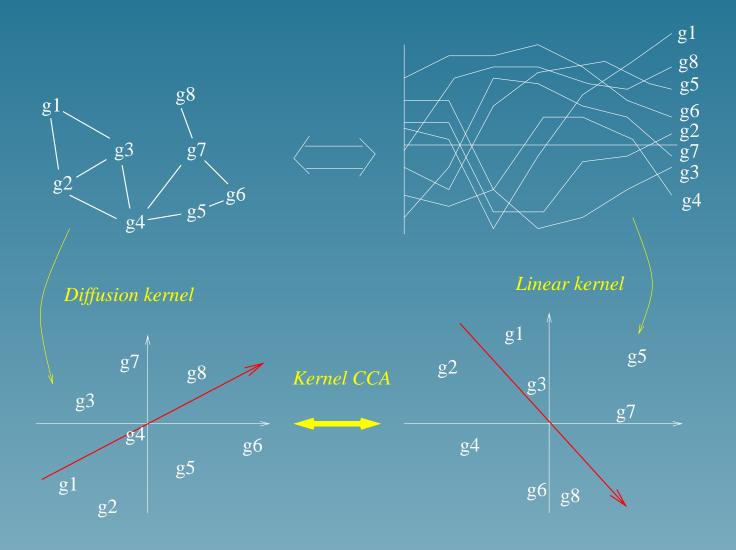
where the parameter δ controls the trade-off between relevance/smoothness on the one hand, correlation on the other hand.

Solving the problem

This formultation is equivalent to a generalized form of CCA (Kernel-CCA, Bach and Jordan, 2002), which is equivalent to the following generalized eigenvector problem

$$\begin{pmatrix} 0 & K_1 K_2 \\ K_2 K_1 & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \rho \begin{pmatrix} K_1^2 + \delta K_1 & 0 \\ 0 & K_2^2 + \delta K_2 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

Summary



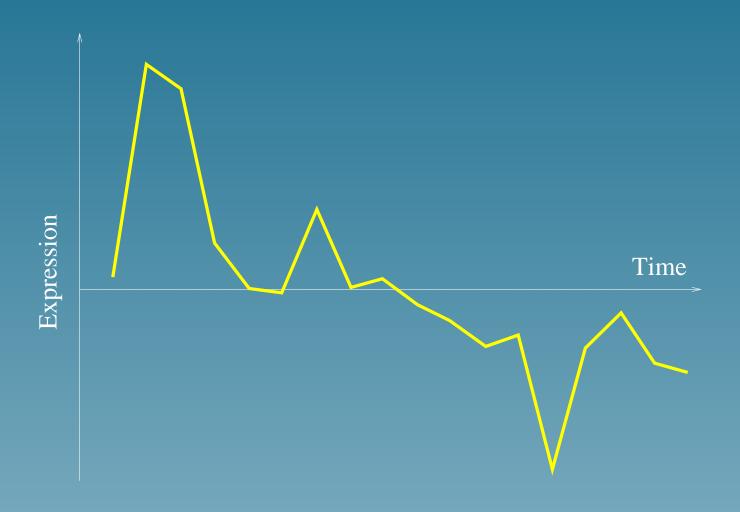
Part 4

Experimental results

Data

- Gene network: two genes are linked if the catalyze successive reactions in the KEGG database
- Expression profiles: 18 time series measures for the 6,000 genes of yeast, during two cell cycles

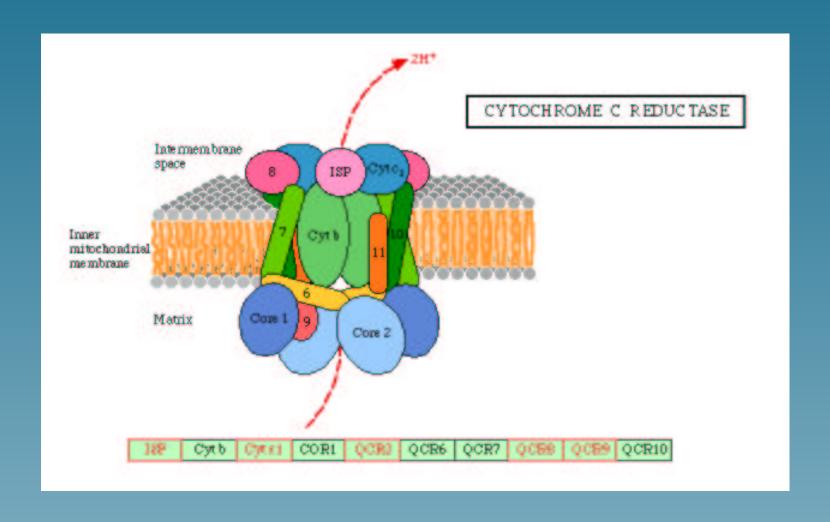
First pattern of expression

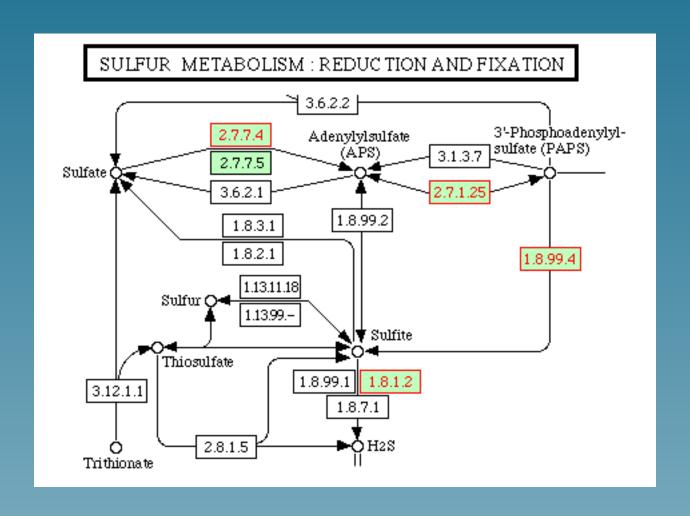


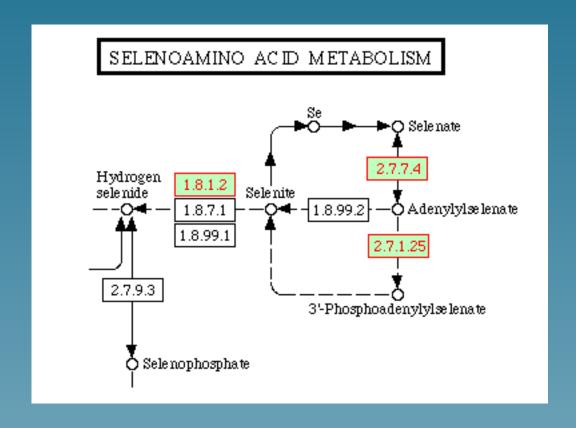
Related metabolic pathways

50 genes with highest $s_2 - s_1$ belong to:

- Oxidative phosphorylation (10 genes)
- Citrate cycle (7)
- Purine metabolism (6)
- Glycerolipid metabolism (6)
- Sulfur metabolism (5)
- Selenoaminoacid metabolism (4), etc...



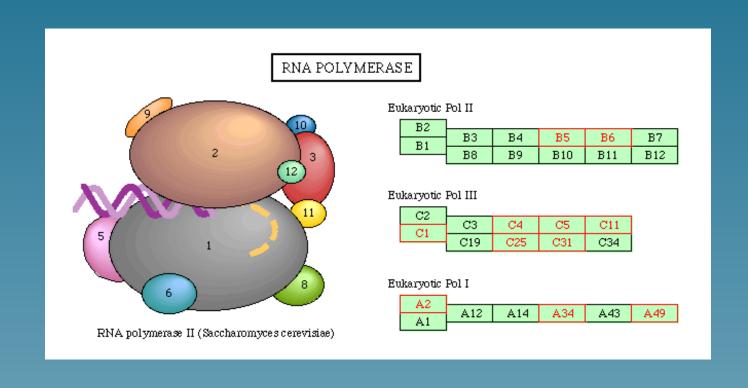


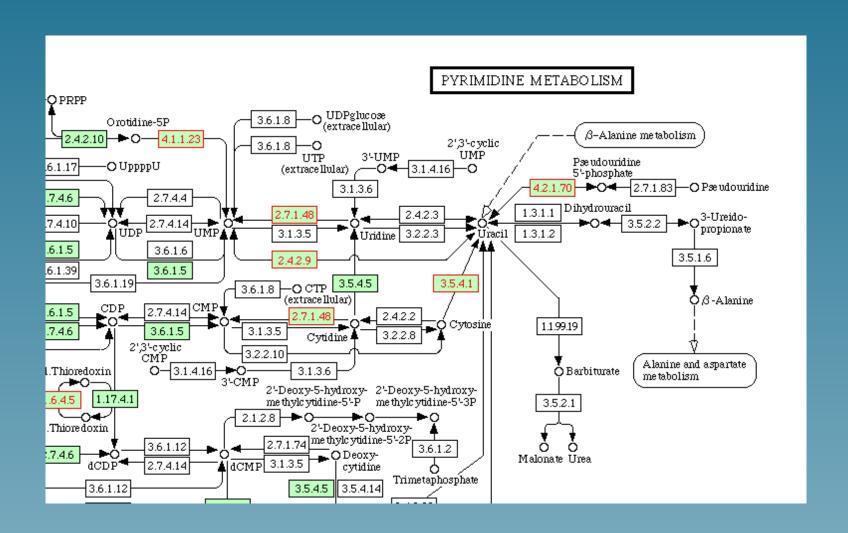


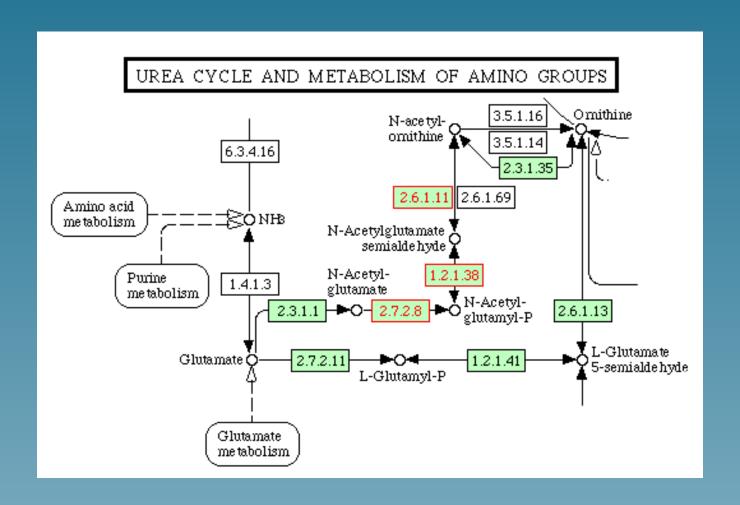
Opposite pattern



- RNA polymerase (11 genes)
- Pyrimidine metabolism (10)
- Aminoacyl-tRNA biosynthesis (7)
- Urea cycle and metabolism of amino groups (3)
- Oxidative phosphorlation (3)
- ATP synthesis(3), etc...







Conclusion

Conclusion

- Heterogeneous data can be integrated with kernels
- The approach can be generalized (non-linear kernel for gene expression, string kernels...)

Workshop

Kernel Methods in Bioinformatics Harnack-Haus, Berlin, April 14, 2003 http://cg.ensmp.fr/vert/kmb03