
1

Probabilistic kernels for structured objects

Jean-Philippe.Vert@mines.org

Ecole des Mines de Paris
Groupe bioinformatique

SVM seminar, Orsay University, Jan. 10, 2003.

2

Outline

1. SVM and kernel methods

2. Probabilistic kernels for structured objects

3. Application: gene function prediction from phylogenetic

profile

3

Part 1

SVM and kernel methods

4

Support vector machines

φ

• Objects to classified x mapped to a feature space

• Largest margin separating hyperplan in the feature space

5

The kernel trick

• Implicit definition of x → Φ(x) through the kernel:

K(x, y)
def
=< Φ(x),Φ(y) >

5

The kernel trick

• Implicit definition of x → Φ(x) through the kernel:

K(x, y)
def
=< Φ(x),Φ(y) >

• Simple kernels can represent complex Φ

5

The kernel trick

• Implicit definition of x → Φ(x) through the kernel:

K(x, y)
def
=< Φ(x),Φ(y) >

• Simple kernels can represent complex Φ

• For a given kernel, not only SVM but also clustering,

PCA, ICA... possible in the feature space = kernel

methods

6

Kernel examples

• “Classical” kernels: polynomial, Gaussian, sigmoid...

but the objects x must be vectors

6

Kernel examples

• “Classical” kernels: polynomial, Gaussian, sigmoid...

but the objects x must be vectors

• “Exotic” kernels for strings:

6

Kernel examples

• “Classical” kernels: polynomial, Gaussian, sigmoid...

but the objects x must be vectors

• “Exotic” kernels for strings:

? Fisher kernel (Jaakkoola and Haussler 98)

6

Kernel examples

• “Classical” kernels: polynomial, Gaussian, sigmoid...

but the objects x must be vectors

• “Exotic” kernels for strings:

? Fisher kernel (Jaakkoola and Haussler 98)

? Convolution kernels (Haussler 99, Watkins 99)

6

Kernel examples

• “Classical” kernels: polynomial, Gaussian, sigmoid...

but the objects x must be vectors

• “Exotic” kernels for strings:

? Fisher kernel (Jaakkoola and Haussler 98)

? Convolution kernels (Haussler 99, Watkins 99)

? Kernel for translation initiation site (Zien et al. 00)

6

Kernel examples

• “Classical” kernels: polynomial, Gaussian, sigmoid...

but the objects x must be vectors

• “Exotic” kernels for strings:

? Fisher kernel (Jaakkoola and Haussler 98)

? Convolution kernels (Haussler 99, Watkins 99)

? Kernel for translation initiation site (Zien et al. 00)

? String kernel (Lodhi et al. 00)

6

Kernel examples

• “Classical” kernels: polynomial, Gaussian, sigmoid...

but the objects x must be vectors

• “Exotic” kernels for strings:

? Fisher kernel (Jaakkoola and Haussler 98)

? Convolution kernels (Haussler 99, Watkins 99)

? Kernel for translation initiation site (Zien et al. 00)

? String kernel (Lodhi et al. 00)

? Spectrum kernel (Leslie et al., PSB 2002)

7

Kernel engineering

• Let X be a finite set

7

Kernel engineering

• Let X be a finite set

• A fonction K : X 2 → R is a valid kernel if it is symmetric

positive definite.

7

Kernel engineering

• Let X be a finite set

• A fonction K : X 2 → R is a valid kernel if it is symmetric

positive definite.

• Kernel engineering:Use prior knowledge to build the

geometry of the feature space through K(., .)

8

Part 2

Probabilistic kernels for
structured objects

9

The problem

• X a finite set of (structured) objects

9

The problem

• X a finite set of (structured) objects

• p(x) a probability distribution on X

9

The problem

• X a finite set of (structured) objects

• p(x) a probability distribution on X

• How to build K(x, y) from p(x)?

9

The problem

• X a finite set of (structured) objects

• p(x) a probability distribution on X

• How to build K(x, y) from p(x)?

• Remark: up to translation and scaling, we can restrict

K to be a probability on X × X (P-kernel)

10

Product kernel

Kprod(x, y) = p(x)p(y)

10

Product kernel

Kprod(x, y) = p(x)p(y)

x

p(x)

y

p(y)

0

10

Product kernel

Kprod(x, y) = p(x)p(y)

x

p(x)

y

p(y)

0

SVM = probability threshold classifier

11

Diagonal kernel

Kdiag(x, y) = p(x)δ(x, y)

11

Diagonal kernel

Kdiag(x, y) = p(x)δ(x, y)

p(y)

p(x)

p(z)

x

y

z

11

Diagonal kernel

Kdiag(x, y) = p(x)δ(x, y)

p(y)

p(x)

p(z)

x

y

z

No learning

12

Interpolated kernel

If objects are composite: x = (x1, x2) :

K(x, y) = Kdiag(x1, y1)Kprod(x2, y2)

12

Interpolated kernel

If objects are composite: x = (x1, x2) :

K(x, y) = Kdiag(x1, y1)Kprod(x2, y2)

= p(x1)δ(x1, y1)× p(x2|x1)p(y2|y1)

AA

BA
BB

AB

B*

A*

13

General interpolated kernel

• Composite objects x = (x1, . . . , xn)

13

General interpolated kernel

• Composite objects x = (x1, . . . , xn)

• A list of index subsets: V = {I1, . . . , Iv}
where Ii ⊂ {1, . . . , n} for i = 1, . . . , v.

13

General interpolated kernel

• Composite objects x = (x1, . . . , xn)

• A list of index subsets: V = {I1, . . . , Iv}
where Ii ⊂ {1, . . . , n} for i = 1, . . . , v.

• Interpolated kernel:

KV(x, y) =
1
|V|

∑
I∈V

Kdiag(xI, yI)Kprod(xIc, yIc)

14

Examples

• If V = {∅}, then:

KV(x, y) = Kprod(x, y).

• If V = {[1, n]}, then:

KV(x, y) = Kdiag(x, y).

15

Rare common subparts

For a given p(x) and p(y), we have:

KV(x, y) = Kprod(x, y)× 1
|V|

∑
I∈V

δ(xI, yI)
p(xI)

15

Rare common subparts

For a given p(x) and p(y), we have:

KV(x, y) = Kprod(x, y)× 1
|V|

∑
I∈V

δ(xI, yI)
p(xI)

x and y get closer in the feature space when they share

rare common subparts

16

Implementation

• For many applications, computation time of the kernel

is a limiting factor

• The sum in the interpolated might involve up to 2n

terms...

• Good news: factorization possible for particular choices

of p(.) and V

17

Example 1: Weight matrix kernel

p(x) =
n∏

i=1

pi(xi)

V = P([1, n])

then:

KV(x, y) =
1
2n

n∏
i=1

φi(xi, yi),

18

with:

φi(xi, yi) =

{
pi(xi) + pi(xi)2 if xi = yi

pi(xi)pi(yi) if xi 6= yi

19

Weight matrix kernel: Proof

K(x, y) =
1
2n

∑
V⊂[1,n]

∏
i∈V

p(xi)δ(xi, yi)×
∏
i/∈V

p(xi)p(yi)

=

1
2n

n∏
i=1

[p(xi)δ(xi, yi) + p(xi)p(yi)] .

20

Example 2: Markov block kernel

p(x) = p1(x1)
n∏

i=2

pi(xi|xi−1)

V = {[k, l] : 1 ≤ k ≤ l ≤ n} ∩ {∅}

then:

KV(x, y) = φ0(n) + φ1(n) + φ2(n),

21

with:
φ0(1) = p1(x1)p1(y1)

φ1(1) = p1(x1)δ(x1, y1)

φ2(1) = 0
and for i = 2, . . . , n

φ0(i) = pi(xi|xi−1)pi(yi|yi−1)× φ0(i− 1)

φ1(i) = pi(xi|xi−1)δ(xi, yi)

×
[
φ1(i− 1) + pi(yi|yi−1)

pi(xi)
φ0(i− 1)

]
φ2(i) = pi(xi|xi−1)pi(yi|yi−1)× [φ1(i− 1) + φ2(i− 1)]

22

Weight matrix kernel: Proof

Classical dynamic programming.

23

Example 3: common subtree kernel

• Let T be a rooted tree

• λ the root, f(s) the father node of any node s ∈ T

• Graphical model and common subtrees:

p(x) = pλ(xλ)
∏

s∈T\{λ}

ps(xs|xf(s))

V = {S rooted subtree of }

24

Then:

K(x, y) =
∑
S∈V

[∏
s∈S

p(xs|xf(s))δ(xs, ys)

×
∏
s/∈S

p(xs|xf(s)p(ys|yf(s))
]

Can be computed in linear time by one post-order

traversal of the tree (similar to the CTW algorithm by

Willems et al.)

25

Example 4: common subtree kernel with
latent variables

• Same as example 3 but some variables are not observed:

K(xobs, yobs) =
∑
S∈V

∑
zS∈AS

p(zS)p(xobs|zS)p(yobs|zS)

• A bit longer to write, but still possible

• Linear time computation

26

Part 3

Application:
Gene functional prediction from

phylogenetic profiles

27

Mini introduction

• Genes are small parts of the DNA which encode proteins.

• About 6,000 genes in the baker yeast, 30,000 in human

• The sequence of the genes are (almost) known

(sequencing projets)

• Next big challenge: understand the function of the

genes

28

Definition

• The phylogenetic profile of a gene is a vector of bits

which indicates the presence (1) or absence (0) of the

gene in every fully sequenced genome.

Gene aero aful . . . tpal worm

YAL001C 1 1 . . . 0 0

YAB002W 0 0 . . . 0 1
...

• Can be estimated in silico by sequence similarity search

29

From profile to function

• Genes are likely to be transmitted together during

evolution when they participate:

? to a common structural complex,

? to a common pathway.

• Consequently genes with similar phylogenetic profiles

are likely to have similar functions

• How to measure the similarity between profiles?

30

Naive approach

• Count the number of bits in common:

0 0 01 1

x

y

1 1 10 0

1 10 0 0

1 10 0 0

s(x, y) = 5

• Cluster or use k-NN for gene function prediction with

this similarity measure (Pellegrini et al., 1999)

31

Limitations of the naive approach

• The set of sequenced organisms has a strong influence on the

similarity score (e.g., eukaryotes are under-represented)

• A more detailed understanding of when two proteins were

transmitted together or not during evolution could be useful

• A function could be characterized by only a subset of the bits (e.g.,

1 in eukaryotes, 0 in bacteria, whatever in archae)

32

What is not used in the naive approach

0 0 01 1

x

y

1 1 10 0

1 10 0 0

1 10 0 0

The knowledge of the phylogenetic tree.

33

Evolution pattern

1

1
1

0

0

1

1

• A possible pattern of transmission during evolution

• Mathematically, a rooted subtree with nodes labeled 0 or 1.

34

Evolution patterns and phylogenetic profiles

1

1

1

0

1

10

1

x 1 1 10 01 10 0 0

Impossible to know for sure if the gene followed exactly this

evolution pattern

35

Probabilistic model of gene transmission

• The phylogenetic tree as a tree graphical model

• Simplified model:

? P (1) = 1− P (0) = 0.9, at the root,

? Along each branch transmission follows the transition matrix:(
0.9 0.1
0.1 0.9

)

36

Probabilistic assignment of evolution
pattern

For a phylogenetic profile x and an evolution pattern e:

• P (e) quantifies how “natural” the pattern is

• P (x|e) quantifies how likely the pattern e is the “true history” of

the profile x

37

Representation of a profile in terms of
evolution patterns

• Consider all possible evolution patterns (e1, . . . , eN). A profile x

can be represented by the N -dimensional vector:

Φ(x) =

√

P (e1)P (x|e1)
...√

P (eN)P (x|eN)

• This leads to the probabilistic kernel described before

38

Comparing two profiles through evolution
patterns

1

1

1

0

1

10

1

0 0 01 1

x

y

1 1 10 0

1 10 0 0

1 10 0 0

39

Gene function prediction with SVM

• Profiles for 2465 genes of S. Cerevisiae were computed by BLAST

search (cf Pavlidis et al. 2001), using 24 genomes.

• Consensus phylogenetic tree (cf. Liberles et al. 2002) with

simplified probabilistic model of gene transmission

• SVM trained to predict all functional classes of the MIPS catalog

with at least 10 genes (cross-validation)

• Comparison of the tree kernel with the naive kernel

40

Results (ROC 50)

Functional class Naive kernel Tree kernel Difference

Amino-acid transporters 0.74 0.81 + 9%
Fermentation 0.68 0.73 + 7%
ABC transporters 0.64 0.87 + 36%
C-compound transport 0.59 0.68 + 15%
Amino-acid biosynthesis 0.37 0.46 + 24%
Amino-acid metabolism 0.35 0.32 - 9%

Tricarboxylic-acid pathway 0.33 0.48 + 45%
Transport Facilitation 0.33 0.28 - 15%

41

A insight into the feature space

• PCA can be performed implicitly in the feature space with a kernel

function: kernel-PCA (Scholkopf et al. 1999)

• Projecting the genes on the first principal components gives an

idea of the shape of the features space

42

Naive kernel PCA

Amino−acid transporters
Fermentation
ABC transporters
C−compound, carbonhydrate transport

PC1

PC2

PC3

PC4

43

Tree kernel PCA

Amino−acid transporters
Fermentation
ABC transporters
C−compound, carbonhydrate transport

PC1

PC2 PC4

PC3

44

Conclusion

45

Conclusion

• A general method to derive a kernel from a probability distribution

• Encouraging results

• Some problems and questions: diagonal dominance? Role of the

prior distribution?

• Contributes to a general approach: encode genomic information

into kernel functions.

