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Part 1

Kernels
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Definition

• Let X be a separable metric space (e.g., discrete)

• A kernel is a mapping K : X × X → R which is:

? symetric : K(x, y) = K(y, x),
? positive semi-definite:

∑
i,j aiajK(xi, xj) ≥ 0 for all ai ∈ R and

xi ∈ X
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Example

• Suppose X = Rd. Then the following is a valid kernel:

K(~x, ~y) = ~x.~y

• Indeed:

? ~x.~y = ~y.~x

?
∑

i,j aiaj ~xi. ~xj = ||
∑

i ai~xi||2 ≥ 0
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Example: kernel in feature space

K(gi, gj)
def
= ~Φ(gi).~Φ(gj)

g1

g2φ(    )

φ(    )g1

g2

Genes
φ

Feature space
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All kernels are inner product

• If K(., .) is a kernel, then there exists a Hilbert space H and a

mapping Φ : X → H such that:

K(x, y) =< Φ(x),Φ(y) >H .

• Proof: by diagonalizing the kernel operator

• Second proof: by explicitly constructing such a H
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RKHS

• A reproducible kernel Hilbert space (RKHS) is a Hilbert space,

subset of RX , defined as the completion of:

span {K(x, .), s ∈ X} .

• The inner product between two elements f =
∑

i aiK(xi, .) and

g =
∑

i biK(xi, .) is defined by:

< f, g >H=
∑
i,j

aibjK(xi, xi).
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RKHS (2)

• Let Φ : X → H defined by Φ(x) = K(x, .). Then:

K(x, y) =< Φ(x),Φ(y) >H=< K(x, .),K(y, .) >H

• For any x ∈ X and f ∈ H, the following holds:

< f, K(x, .) >H= f(x).
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RKHS (3)

• We have seen that a kernel K defines a Hilbert structure on (a

subset of) XR

• Conversely: let H be a Hilbert space, subset of XR, such that for

any x ∈ X the evaluation functional f ∈ H → f(x) be continuous

• Then there exists a kernel K such that H be its associated RKHS.
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Representer theorem (Wahba, 1971)

Let H be a RKHS with kernel K, and (x1, . . . , xN) ∈ XN . Then the

solution of:

min
f∈H

N∑
i=1

c(xi, f(xi)) + λ||f ||2H

where c : X × R → R, can always be written in the form:

f(x) =
n∑

i=1

aiK(xi, x).
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Example

For a Gaussian kernel:

K(x, y) = exp
(
−||x− y||2

2σ2

)
,

the norm in RKHS is:

||f ||2H =
1

2πσ2

∫
|f̂(ω)|2 exp

(
σ2||ω||2

2

)
dω.
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Partie 2

What can you do with a kernel
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Overview

Let K(x, y) be a given kernel. Then is it possible to perform various

algorithms implicitly in the feature space (thanks to the representer

theorem), such as:

• Compute the distance between points

• Principal component analysis (PCA)

• Canonical correlation analysis (CCA)

• Classification by Support vector machines (SVM)
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Compute the distance between objects

g2φ(    )
0

φ(    )g1 d

d(g1, g2)2 = ‖~Φ(g1)− ~Φ(g2)‖2

=
(
~Φ(g1)− ~Φ(g2)

)
.
(
~Φ(g1)− ~Φ(g2)

)
= ~Φ(g1).~Φ(g1) + ~Φ(g2).~Φ(g2)− 2~Φ(g1).~Φ(g2)

d(g1, g2)2= K(g1, g1) + K(g2, g2)− 2K(g1, g2)
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Distance to the center of mass

m

φ(    )g1

Center of mass: ~m = 1
N

∑N
i=1

~Φ(gi), hence:

‖~Φ(g1)− ~m‖2 = ~Φ(g1).~Φ(g1)− 2~Φ(g1).~m + ~m.~m

= K(g1, g1)−
2
N

N∑
i=1

K(g1, gi) +
1

N2

N∑
i,j=1

K(gi, gj)
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Principal component analysis

PC1PC2

It is equivalent to find the eigenvectors of

K =
(
~Φ(gi).~Φ(gj)

)
i,j=1...N

=
(
K(gi, gj)

)
i,j=1...N

Useful to project the objects on small-dimensional spaces (feature

extraction).
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Canonical correlation analysis

CCA2

CCA1

CCA1

CCA2

K1 and K2 are two kernels for the same objects. CCA can be

performed by solving the following generalized eigenvalue problem:(
0 K1K2

K2K1 0

)
~ξ = ρ

(
K2

1 0
0 K2

2

)
~ξ

Useful to find correlations between different representations of the

same objects (ex: genes, ...)
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Classification: support vector machines (SVM)

Find a linear boundary with large margin and few errors
max~α

∑n
i=1 αi − 1

2

∑n
i,j=1 αiαjyiyjK(gi, gj)

∀i = 1, . . . , n 0 ≤ αi ≤ C∑n
i=1 αiyi = 0
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Examples: SVM in bioinformatics

• Gene functional classification from microarry: Brown et al. (2000),

Pavlidis et al. (2001)

• Tissue classification from microarray: Mukherje et al. (1999),

Furey et al. (2000), Guyon et al. (2001)

• Protein family prediction from sequence: Jaakkoola et al. (1998)

• Protein secondary structure prediction: Hua et al. (2001)

• Protein subcellular localization prediction from sequence: Hua et

al. (2001)
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Summary

• Once a kernel K(x, y) is given, several analysis can be performed

implicitly in the feature space

• These methods are considered currently among the most powerful

on many real-world problems

• Modularity: each kernel can work with each method
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Part 3

Kernelizing the proteome
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What is a gene

• a DNA sequence?

• a primary, secondary or 3D structure of a protein?

• an expression profile?

• a node in a regulatory or interaction network?

• a promoter region?

• a phylogenetic profile?

• ...
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Kernel for sequences

• spectrum kernel (Eskin et al., 2002)

• Fisher kernel (Jaakkola et al., 1999)

• Pair HMM kernels (Haussler, 1999)

• Very good results for remote homology detection
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Kernels for expression profiles

An expression profile is a vector ~Φ(x):

• Linear kernel: K(x, y) = ~Φ(x).~Φ(y).

• Polynomial kernel: K(x, y) =
(
~Φ(x).~Φ(y) + 1

)d

.

• Gaussian kernel: K(x, y) = exp
(
||~Φ(x)−~Φ(y)||2

2σ2

)
.
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Diffusion kernel for the nodes of a graph
(Kandor, 2001)

• Let G a graph with vertices X .

• Let L = A−D be the Laplacian matrix of the graph.

• For any λ > 0, the following is a valid kernel

K = exp(−λL)
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Example (1)

1

2

3

4

5

L =


−1 0 1 0 0
0 −1 1 0 0
1 1 −3 1 0
0 0 1 −2 1
0 0 0 1 −1


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Example (2)

1

2

3

4

5

K = exp(−L) =


0.49 0.12 0.23 0.10 0.03
0.12 0.49 0.23 0.10 0.03
0.23 0.23 0.24 0.17 0.10
0.10 0.10 0.17 0.31 0.30
0.03 0.03 0.10 0.30 0.52


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More kernels

• Information diffusion kernels (Lafferty and Lebanon, 2002) for

probability densities

• Kernels on finite groups (Kondor)

• Kernels for 3D structures
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Operations on kernels

• The space of kernels is a closed convex cone (closed under addition,

pointwise limit, multiplication by a positive scalar)

• Closed under product and tensor product

• linear combinations can be optimized by semi-definite programming

(SDP)

• A kernel is a covariance function which defines a Gaussian process.

The information geometry of Gaussian process defines a natural

geometry on kernels.
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Summary

• Kernels can be built from a priori knowledge, or obtained by various

operations from initial kernels

• A kernel can be thought of as a measure of similarity; this can be

useful to make new kernels for any given type of data

• Kernel engineering and kernel optimization is an active field of

research currently
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Part 4

Application: comparing a protein
network and expression data
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Genes encode proteins which can catalyse chemical
reations

Nicotinamide Mononucleotide Adenylyltransferase With Bound Nad+
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Chemical reactions are often parts of pathways

From http://www.genome.ad.jp/kegg/pathway
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Microarray technology monitors RNA quantity

(From Spellman et al., 1998)
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Comparing gene expression and protein network

g8

g3 g7

g6
g5g4

g1

g1

g5
g6

g7
g3
g4

g8

g2

Gene network Expression profiles

g2

Are there “correlations”?
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Pattern of expression

g1

g5
g6

g7
g3
g4

g8

g2

−0.8

+0.8
+0.2

+0.4
−0.7
+0.5
−0.4

+0.1

• In yellow: a candidate pattern , and tbe correlation coefficient with

each gene profile
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Pattern smoothness

−0.8

+0.8
+0.2

−0.4

+0.1

g8

g3 g7

g6
g5g4

g1

g1

g5
g6

g7
g3
g4

g2

g2

+0.4
−0.7
+0.5

g8
−0.8

−0.7

−0.4

+0.1
+0.2

+0.4

+0.5

+0.8

• The correlation function with interesting patterns should vary

smoothly on the graph
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Pattern relevance

• Interesting patterns involve many genes

• The projection of profiles onto an interesting pattern should capture

a lot of variations among profiles

• Relevant patterns can be found by PCA
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Problem

Find patterns of expression which are simultaneously

• smooth

• relevant



41

Pattern relevance

• Let e(x) the profile of gene x

• Let K1(x, y) = e(x).e(y) be the linear kernel, with RKHS H1.

• The norm ||.||H1 is a relevance functional: the relevance of f ∈ H1

increases when the following decreases:

||f ||H1

||f ||L2
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Pattern smoothness

• Let K2(x, y) be the diffusion kernel obtained from the gene network,

with RKHS H2.

• It can be considered as a discretized version of a Gaussian kernel

(solving the heat equation with the graph Laplacian)

• The norm ||.||H2 is a smoothness functional: the smoother a

function f : X → R, the larger the function:

||f ||H1

||f ||L2
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Problem reformulation

Find a linear function f1 and a function f2 such that:

• f1 be relevant : ||f1||L2/||f1||H1 be large

• f2 be smooth : ||f2||L2/||f2||H2 be large

• f1 and f2 be correlated :

f1.f2

||f1||L2||f2||L2

be large
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Problem reformulation (2)

The three goals can be combined in the following problem:

max
f1,f2

f1.f2(
||f1||2L2 + δ||f1||2H1

)1
2
(
||f2||2L2 + δ||f2||2H2

)1
2

where the parameter δ controls the trade-off between

relevance/smoothness on the one hand, correlation on the other

hand.
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Solving the problem

This formultation is equivalent to a generalized form of CCA

(Kernel-CCA, Bach and Jordan, 2002), which is equivalent to the

following generalized eigenvector problem(
0 K1K2

K2K1 0

) (
α

β

)
= ρ

(
K2

1 + δK1 0
0 K2

2 + δK2

) (
α

β

)
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Summary

g8

g3 g7

g6
g5g4

g1

g1

g5
g6

g7
g3
g4

g8

g2

g2

g6

g7 g8
g3

g1

g4

g5

g1

g4

g6

g7

g8

g3
g5g2

g2

Kernel CCA

Diffusion kernel
Linear kernel
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Data

• Gene network: two genes are linked if the catalyze successive

reactions in the KEGG database

• Expression profiles: 18 time series measures for the 6,000 genes of

yeast, during two cell cycles



48

First pattern of expression

Time

E
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n
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Related metabolic pathways

50 genes with highest s2 − s1 belong to:

• Oxidative phosphorylation (10 genes)

• Citrate cycle (7)

• Purine metabolism (6)

• Glycerolipid metabolism (6)

• Sulfur metabolism (5)

• Selenoaminoacid metabolism (4) , etc...
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Related genes
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Related genes
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Related genes
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Opposite pattern

E
xp
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n

Time
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Related genes

• RNA polymerase (11 genes)

• Pyrimidine metabolism (10)

• Aminoacyl-tRNA biosynthesis (7)

• Urea cycle and metabolism of amino groups (3)

• Oxidative phosphorlation (3)

• ATP synthesis(3) , etc...
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Related genes
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Related genes
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Related genes



58

Conclusion
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Conclusion

• There is an urgent need for formalisms and computational tools to

integrate heterogeneous data

• Kernel methods offer such a framework.

• Few conceptual relationships between genes, but computational

efficiency.

• Machine learning and kernel methods are currently boosted by

biology.


