Extracting active metabolic pathways from gene expression data

Jean-Philippe Vert

Computational biology group Ecole des Mines de Paris

Jean-Philippe.Vert@mines.org

Journée statistique des biopuces, Université Paul Sabatier, Toulouse, France, March 31, 2003.

Overview

1. Problem Formulation
2. An approach using kernel methods
3. Experimental results

Part 1

Problem formulation

Genes encode proteins which can catalyse chemical reations

Nicotinamide Mononucleotide Adenylyltransferase With Bound Nad+

Chemical reactions are often parts of pathways

From http://www.genome.ad.jp/kegg/pathway

Microarray technology monitors RNA quantity

(From Spellman et al., 1998)

Comparing gene expression and protein network

Are there "correlations"?

Pattern of expression

- In yellow: a candidate pattern , and tbe correlation coefficient with each gene profile

Pattern smoothness

- The correlation function with interesting patterns should vary smoothly on the graph

Pattern relevance

- Interesting patterns involve many genes
- The projection of profiles onto an interesting pattern should capture a lot of variations among profiles
- Relevant patterns can be found by PCA

Problem

Find patterns of expression which are simultaneously

- smooth
- relevant

Part 3

An approach using kernel methods

Mercer kernels

- A Mercer kernel $K(x, y)$ on a set \mathcal{X} (e.g., the set of genes) is a symetric positive definite function:
* $K(x, y)=K(y, x)$ for all x, y in \mathcal{X};
\star for all $n \in \mathbb{N}, x_{1}, \ldots, x_{n}$ in \mathcal{X} and a_{1}, \ldots, a_{n} in \mathbb{R} :

$$
\sum_{i, j=1}^{n} a_{i} a_{j} K\left(x_{i}, x_{j}\right) \geq 0
$$

- Example: $K(\vec{x}, \vec{y})=\vec{x} \cdot \vec{y}$

Reproducing kernel Hilbert space

- A Mercer kernel defines a Hilbert space on the set of functions:

$$
H=\operatorname{span}\{K(x, .), x \in \mathcal{X}\} \subset\{f: \mathcal{X} \rightarrow \mathbb{R}\}
$$

called reproducible kernel Hilbert space (RKHS). It satisfies:

$$
<K(x, .), K(y, .)>_{H}=K(x, y) .
$$

- The norm $\|f\|_{H}$ can have useful interpretation for particular kernels

RKHS example 1

Let $\mathcal{X}=\mathbb{R}^{d}$ and K be a RBF Gaussian kernel:

$$
K(x, y)=\exp \left(-\frac{\|x-y\|^{2}}{2 \sigma^{2}}\right),
$$

then the norm in RKHS is a smoothing functional:

$$
\|f\|_{H}^{2}=\frac{1}{2 \pi \sigma^{2}} \int|\hat{f}(\omega)|^{2} \exp \left(\frac{\sigma^{2}\|\omega\|^{2}}{2}\right) d \omega .
$$

Pattern relevance

- Let $e(x)$ the profile of gene x
- Let $K_{1}(x, y)=e(x) . e(y)$ be the linear kernel, with RKHS H_{1}.
- The norm ||. $\|_{H_{1}}$ is a relevance functional: the relevance of $f \in H_{1}$ increases when the following decreases:

$$
\frac{\|f\|_{H_{1}}}{\|f\|_{L_{2}}}
$$

Pattern smoothness

- Let $K_{2}(x, y)$ be the diffusion kernel obtained from the gene network, with RKHS H_{2}.
- It can be considered as a discretized version of a Gaussian kernel (solving the heat equation with the graph Laplacian)
- The norm $\|\cdot\|_{H_{2}}$ is a smoothness functional: the smoother a function $f: \mathcal{X} \rightarrow \mathbb{R}$, the larger the function:

$$
\frac{\|f\|_{H_{1}}}{\|f\|_{L_{2}}}
$$

Diffusion kernel (Kondor and Lafferty, 2002)

$$
-L=\left(\begin{array}{ccccc}
-1 & 0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
1 & 1 & -3 & 1 & 0 \\
0 & 0 & 1 & -2 & 1 \\
0 & 0 & 0 & 1 & -1
\end{array}\right)
$$

Diffusion kernel (Kondor and Lafferty, 2002)

$$
K=\exp (-L)=\left(\begin{array}{lllll}
0.49 & 0.12 & 0.23 & 0.10 & 0.03 \\
0.12 & 0.49 & 0.23 & 0.10 & 0.03 \\
0.23 & 0.23 & 0.24 & 0.17 & 0.10 \\
0.10 & 0.10 & 0.17 & 0.31 & 0.30 \\
0.03 & 0.03 & 0.10 & 0.30 & 0.52
\end{array}\right)
$$

Problem reformulation

Find a linear function f_{1} and a function f_{2} such that:

- f_{1} be relevant : $\left|\mid f_{1}\left\|_{L^{2}} /\right\| f_{1} \|_{H_{1}}\right.$ be large
- f_{2} be smooth : $\left|\mid f_{2}\left\|_{L^{2}} /\right\| f_{2} \|_{H_{2}}\right.$ be large
- f_{1} and f_{2} be correlated:

$$
\frac{f_{1} \cdot f_{2}}{\left\|f_{1}\right\|_{L^{2}}\left\|f_{2}\right\|_{L^{2}}}
$$

be large

Problem reformulation (2)

The three goals can be combined in the following problem:

$$
\max _{f_{1}, f_{2}} \frac{f_{1} \cdot f_{2}}{\left(\left\|f_{1}\right\|_{L^{2}}^{2}+\delta\left\|f_{1}\right\|_{H_{1}}^{2}\right)^{\frac{1}{2}}\left(\left\|f_{2}\right\|_{L^{2}}^{2}+\delta\left\|f_{2}\right\|_{H_{2}}^{2}\right)^{\frac{1}{2}}}
$$

where the parameter δ controls the trade-off between relevance/smoothness on the one hand, correlation on the other hand.

Solving the problem

This formultation is equivalent to a generalized form of CCA (Kernel-CCA, Bach and Jordan, 2002), which is equivalent to the following generalized eigenvector problem

$$
\left(\begin{array}{cc}
0 & K_{1} K_{2} \\
K_{2} K_{1} & 0
\end{array}\right)\binom{\alpha}{\beta}=\rho\left(\begin{array}{cc}
K_{1}^{2}+\delta K_{1} & 0 \\
0 & K_{2}^{2}+\delta K_{2}
\end{array}\right)\binom{\alpha}{\beta}
$$

Summary

Part 4

Experimental results

Data

- Gene network: two genes are linked if the catalyze successive reactions in the KEGG database
- Expression profiles: 18 time series measures for the 6,000 genes of yeast, during two cell cycles

First pattern of expression

Related metabolic pathways

50 genes with highest $s_{2}-s_{1}$ belong to:

- Oxidative phosphorylation (10 genes)
- Citrate cycle (7)
- Purine metabolism (6)
- Glycerolipid metabolism (6)
- Sulfur metabolism (5)
- Selenoaminoacid metabolism (4) , etc...

Related genes

Related genes

Related genes

SELENOAMINO ACD METABOLISM

Opposite pattern

Related genes

- RNA polymerase (11 genes)
- Pyrimidine metabolism (10)
- Aminoacyl-tRNA biosynthesis (7)
- Urea cycle and metabolism of amino groups (3)
- Oxidative phosphorlation (3)
- ATP synthesis(3) , etc...

Related genes

Related genes

Related genes

Conclusion

Conclusion

- Heterogeneous data can be integrated with kernels
- The approach can be generalized (non-linear kernel for gene expression, string kernels...)

Workshop

Kernel Methods in Bioinformatics Harnack-Haus, Berlin, April 14, 2003 http://cg.ensmp.fr/vert/kmb03

