Kernel methods in computational biology

Jean-Philippe Vert

Ecole des Mines de Paris, France Jean-Philippe.Vert@mines.org

SABRES seminaire, Universite Bretagne Sud, Vannes, April 4, 2003

Outline

- 1. About kernels
- 2. What you can do with a kernel
- 3. Kernelizing the proteome
- 4. Application: comparison of a protein network and expression data

Part 1

Definition

- Let \mathcal{X} be a set (e.g., discrete)
- A kernel is a mapping $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ which is:
 - \star symetric : K(x,y) = K(y,x),
 - ★ positive semi-definite: $\sum_{i,j} a_i a_j K(x_i, x_j) \ge 0$ for all $a_i \in \mathbb{R}$ and $x_i \in \mathcal{X}$

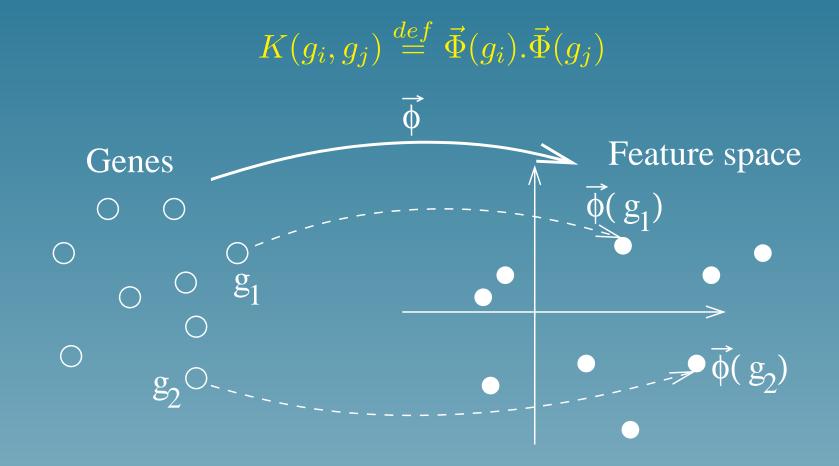
Example

• Suppose $\mathcal{X} = \mathbb{R}^d$. Then the following is a valid kernel:

 $K(\vec{x}, \vec{y}) = \vec{x}.\vec{y}$

 $\star \vec{x}.\vec{y} = \vec{y}.\vec{x}$ $\star \sum_{i,j} a_i a_j \vec{x_i}.\vec{x_j} = ||\sum_i a_i \vec{x_i}||^2 \ge 0$

Example: kernel in feature space



All kernels are inner product

• If K(.,.) is a kernel, then there exists a Hilbert space \mathcal{H} and a mapping $\Phi: \mathcal{X} \to \mathcal{H}$ such that:

$$K(x,y) = <\Phi(x), \Phi(y) >_{\mathcal{H}}.$$

- Proof: by diagonalizing the kernel operator
- Second proof: by explicitly constructing such a \mathcal{H}

RKHS

• A reproducible kernel Hilbert space (RKHS) is a Hilbert space, subset of $\mathbb{R}^{\mathcal{X}}$, defined as the completion of:

span { $K(x,.), s \in \mathcal{X}$ }.

• The inner product between two elements $f = \sum_i a_i K(x_i, .)$ and $g = \sum_i b_i K(x_i, .)$ is defined by:

$$\langle f, g \rangle_{\mathcal{H}} = \sum_{i,j} a_i b_j K(x_i, x_i).$$

RKHS (2)

• Let $\Phi: \mathcal{X} \to \mathcal{H}$ defined by $\Phi(x) = K(x, .)$. Then:

 $K(x,y) = \langle \Phi(x), \Phi(y) \rangle_{\mathcal{H}} = \langle K(x,.), K(y,.) \rangle_{\mathcal{H}}$

• For any $x \in \mathcal{X}$ and $f \in \mathcal{H}$, the following holds:

 $\langle f, K(x, .) \rangle_{\mathcal{H}} = f(x).$

RKHS (3)

- We have seen that a kernel K defines a Hilbert structure on (a subset of) $\mathcal{X}^{\mathbb{R}}$
- Conversely: let \mathcal{H} be a Hilbert space, subset of $\mathcal{X}^{\mathbb{R}}$, such that for any $x \in \mathcal{X}$ the evaluation functional $f \in \mathcal{H} \to f(x)$ be continuous
- Then there exists a kernel K such that \mathcal{H} be its associated RKHS.

Representer theorem (Wahba, 1971)

Let \mathcal{H} be a RKHS with kernel K, and $(x_1, \ldots, x_N) \in \mathcal{X}^N$. Then the solution of:

$$\min_{f \in \mathcal{H}} \sum_{i=1}^{N} c(x_i, f(x_i)) + \lambda ||f||_{\mathcal{H}}^2$$

where $c: \mathcal{X} \times \mathbb{R} \to \mathbb{R}$, can always be written in the form:

$$f(x) = \sum_{i=1}^{n} a_i K(x_i, x)$$

Example

For a Gaussian kernel:

$$K(x,y) = \exp\left(-\frac{||x-y||^2}{2\sigma^2}\right),$$

the norm in RKHS is:

$$||f||_{\mathcal{H}}^2 = \frac{1}{2\pi\sigma^2} \int |\hat{f}(\omega)|^2 \exp\left(\frac{\sigma^2 ||\omega||^2}{2}\right) d\omega.$$

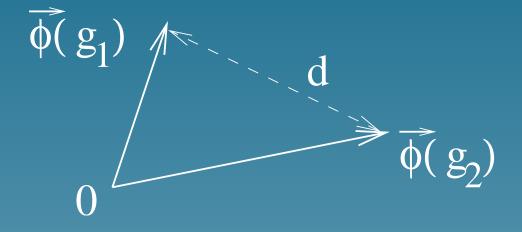
What can you do with a kernel

Overview

Let K(x, y) be a given kernel. Then is it possible to perform various algorithms implicitly in the feature space (thanks to the representer theorem), such as:

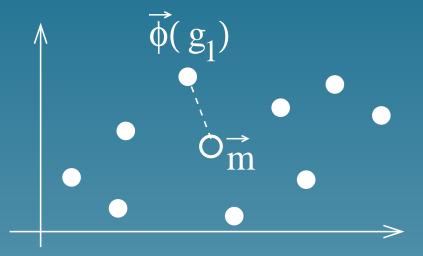
- Compute the distance between points
- Principal component analysis (PCA)
- Canonical correlation analysis (CCA)
- Classification by Support vector machines (SVM)

Compute the distance between objects



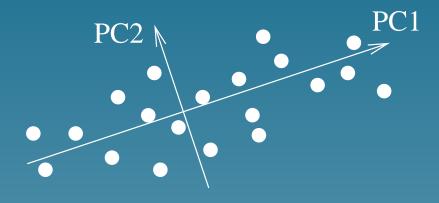
 $d(g_1, g_2)^2 = \|\vec{\Phi}(g_1) - \vec{\Phi}(g_2)\|^2$ = $\left(\vec{\Phi}(g_1) - \vec{\Phi}(g_2)\right) \cdot \left(\vec{\Phi}(g_1) - \vec{\Phi}(g_2)\right)$ = $\vec{\Phi}(g_1) \cdot \vec{\Phi}(g_1) + \vec{\Phi}(g_2) \cdot \vec{\Phi}(g_2) - 2\vec{\Phi}(g_1) \cdot \vec{\Phi}(g_2)$ $d(g_1, g_2)^2 - K(g_1, g_1) + K(g_2, g_2) - 2K(g_1, g_2)$

Distance to the center of mass



Center of mass: $\vec{m} = \frac{1}{N} \sum_{i=1}^{N} \vec{\Phi}(g_i)$, hence: $\|\vec{\Phi}(g_1) - \vec{m}\|^2 = \vec{\Phi}(g_1) \cdot \vec{\Phi}(g_1) - 2\vec{\Phi}(g_1) \cdot \vec{m} + \vec{m} \cdot \vec{m}$ $= K(g_1, g_1) - \frac{2}{N} \sum_{i=1}^{N} K(g_1, g_i) + \frac{1}{N^2} \sum_{i,j=1}^{N} K(g_i, g_j)$

Principal component analysis

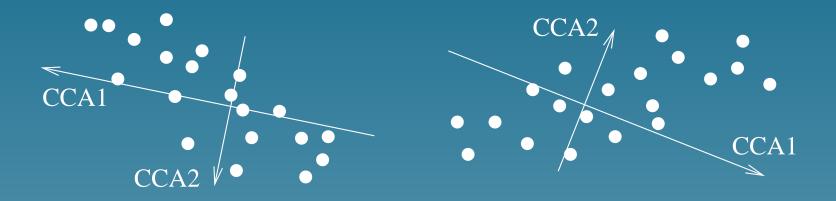


It is equivalent to find the eigenvectors of

$$K = \left(\vec{\Phi}(g_i) \cdot \vec{\Phi}(g_j)\right)_{i,j=1...N}$$
$$= \left(K(g_i, g_j)\right)_{i,j=1...N}$$

Useful to project the objects on small-dimensional spaces (feature extraction).

Canonical correlation analysis

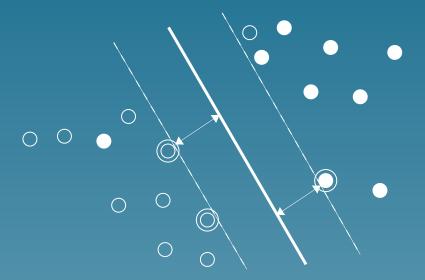


 K_1 and K_2 are two kernels for the same objects. CCA can be performed by solving the following generalized eigenvalue problem:

$$\begin{pmatrix} 0 & K_1 K_2 \\ K_2 K_1 & 0 \end{pmatrix} \vec{\xi} = \rho \begin{pmatrix} K_1^2 & 0 \\ 0 & K_2^2 \end{pmatrix} \vec{\xi}$$

Useful to find correlations between different representations of the same objects (ex: genes, ...)

Classification: support vector machines (SVM)



Find a linear boundary with large margin and few errors

$$\begin{cases} \max_{\vec{\alpha}} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K(g_{i}, g_{j}) \\ \forall i = 1, \dots, n \quad 0 \le \alpha_{i} \le C \\ \sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \end{cases}$$

Examples: SVM in bioinformatics

- Gene functional classification from microarry: Brown et al. (2000), Pavlidis et al. (2001)
- Tissue classification from microarray: Mukherje et al. (1999), Furey et al. (2000), Guyon et al. (2001)
- Protein family prediction from sequence: Jaakkoola et al. (1998)
- Protein secondary structure prediction: Hua et al. (2001)
- Protein subcellular localization prediction from sequence: Hua et al. (2001)

Summary

- Once a kernel K(x, y) is given, several analysis can be performed implicitly in the feature space
- These methods are considered currently among the most powerful on many real-world problems
- Modularity: each kernel can work with each method

Kernelizing the proteome

What is a gene

- a DNA sequence?
- a primary, secondary or 3D structure of a protein?
- an expression profile?
- a node in a regulatory or interaction network?
- a promoter region?

. . .

• a phylogenetic profile?

23

Kernel for sequences

- spectrum kernel (Eskin et al., 2002)
- Fisher kernel (Jaakkola et al., 1999)
- Pair HMM kernels (Haussler, 1999)
- Very good results for remote homology detection

Kernels for expression profiles

An expression profile is a vector $\vec{\Phi}(x)$:

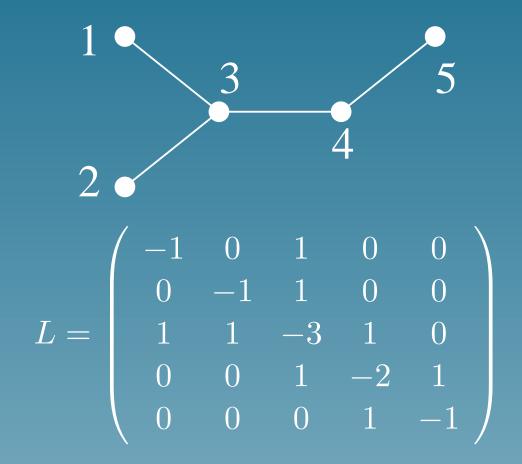
- Linear kernel: $K(x,y) = \vec{\Phi}(x).\vec{\Phi}(y).$
- Polynomial kernel: $K(x, y) = \left(\vec{\Phi}(x) \cdot \vec{\Phi}(y) + 1\right)^d$.
- Gaussian kernel: $K(x,y) = \exp\left(\frac{||\vec{\Phi}(x) \vec{\Phi}(y)||^2}{2\sigma^2}\right)$.

Diffusion kernel for the nodes of a graph (Kandor, 2001)

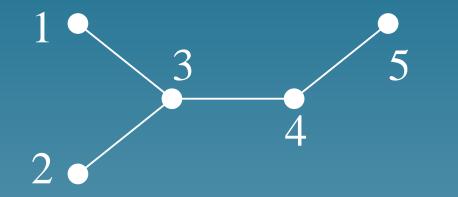
- Let G a graph with vertices \mathcal{X} .
- Let L = A D be the Laplacian matrix of the graph.
- For any $\lambda > 0$, the following is a valid kernel

 $K = \exp(-\lambda L)$

Example (1)



Example (2)



	0.49	0.12	0.23	0.10	0.03
	0.12	0.49	0.23	0.10	0.03
$K = \exp(-L) =$	0.23	0.23	0.24	0.17	0.10
	0.10	0.10	0.17	0.31	0.30
	0.03	0.03	0.10	0.30	0.52

More kernels

- Information diffusion kernels (Lafferty and Lebanon, 2002) for probability densities
- Kernels on finite groups (Kondor)
- Kernels for <u>3D structures</u>

Operations on kernels

- The space of kernels is a closed convex cone (closed under addition, pointwise limit, multiplication by a positive scalar)
- Closed under product and tensor product
- linear combinations can be optimized by semi-definite programming (SDP)
- A kernel is a covariance function which defines a Gaussian process. The information geometry of Gaussian process defines a natural geometry on kernels.

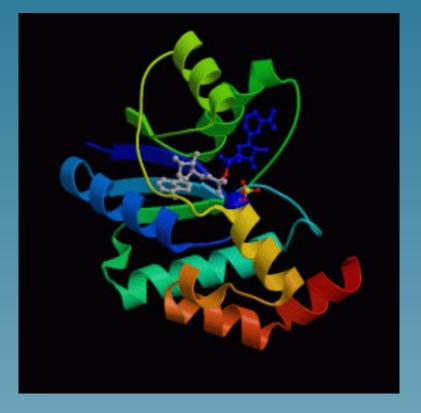
Summary

- Kernels can be built from a priori knowledge, or obtained by various operations from initial kernels
- A kernel can be thought of as a measure of similarity; this can be useful to make new kernels for any given type of data
- Kernel engineering and kernel optimization is an active field of research currently

Part 4

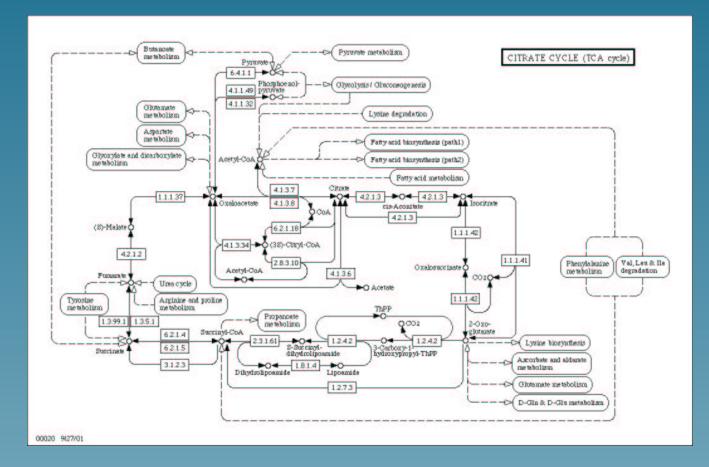
Application: comparing a protein network and expression data

Genes encode proteins which can catalyse chemical reations



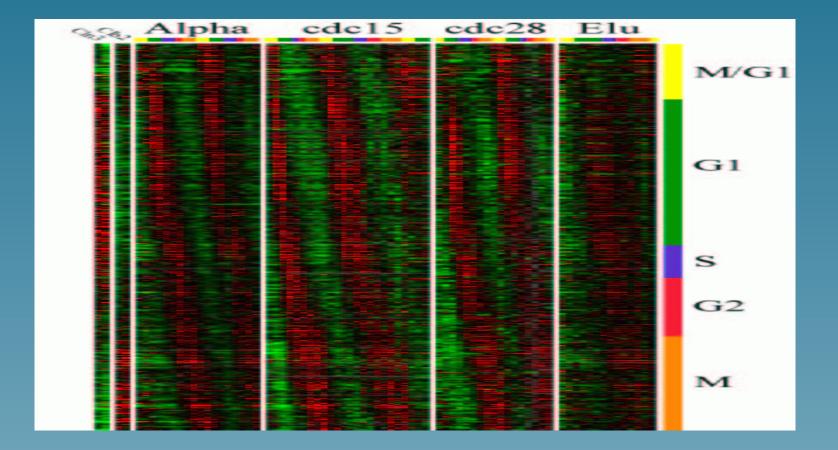
Nicotinamide Mononucleotide Adenylyltransferase With Bound Nad+

Chemical reactions are often parts of pathways



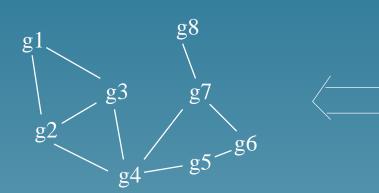
From http://www.genome.ad.jp/kegg/pathway

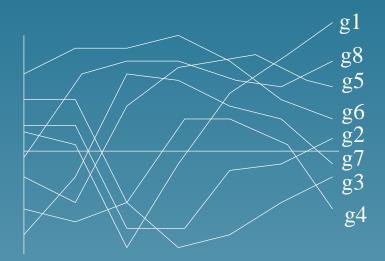
Microarray technology monitors RNA quantity



(From Spellman et al., 1998)

Comparing gene expression and protein network



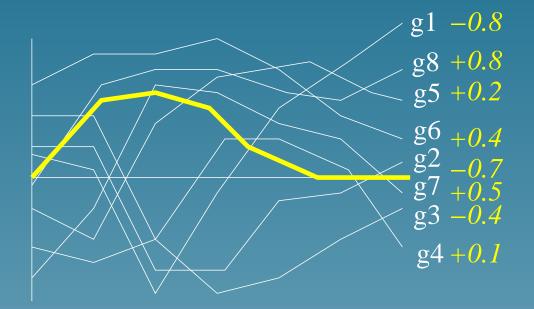


Gene network

Expression profiles

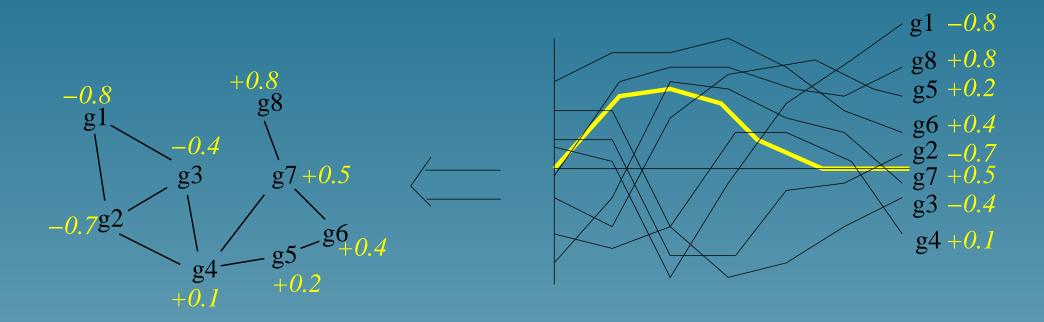
Are there "correlations"?

Pattern of expression



 In yellow: a candidate pattern , and the correlation coefficient with each gene profile

Pattern smoothness



 The correlation function with interesting patterns should vary smoothly on the graph

Pattern relevance

- Interesting patterns involve many genes
- The projection of profiles onto an interesting pattern should capture a lot of variations among profiles
- Relevant patterns can be found by PCA

Problem

Find patterns of expression which are simultaneously

- smooth
- relevant

Pattern relevance

- Let e(x) the profile of gene x
- Let $K_1(x,y) = e(x).e(y)$ be the linear kernel, with RKHS H_1 .
- The norm $||.||_{H_1}$ is a relevance functional: the relevance of $f \in H_1$ increases when the following decreases:

Pattern smoothness

- Let K₂(x, y) be the diffusion kernel obtained from the gene network, with RKHS H₂.
- It can be considered as a discretized version of a Gaussian kernel (solving the heat equation with the graph Laplacian)
- The norm $\|.\|_{H_2}$ is a smoothness functional: the smoother a function $f : \mathcal{X} \to \mathbb{R}$, the larger the function:

 $\frac{||f||_{H_1}}{||f||_{L_2}}$

Problem reformulation

Find a linear function f_1 and a function f_2 such that:

- f_1 be relevant : $||f_1||_{L^2}/||f_1||_{H_1}$ be large
- f_2 be smooth : $||f_2||_{L^2}/||f_2||_{H_2}$ be large
- f_1 and f_2 be correlated :

 $\frac{f_1.f_2}{||f_1||_{L^2}||f_2||_{L^2}}$

be large

Problem reformulation (2)

The three goals can be combined in the following problem:

$$\max_{f_1, f_2} \frac{f_1.f_2}{\left(||f_1||_{L^2}^2 + \delta||f_1||_{H_1}^2\right)^{\frac{1}{2}} \left(||f_2||_{L^2}^2 + \delta||f_2||_{H_2}^2\right)^{\frac{1}{2}}}$$

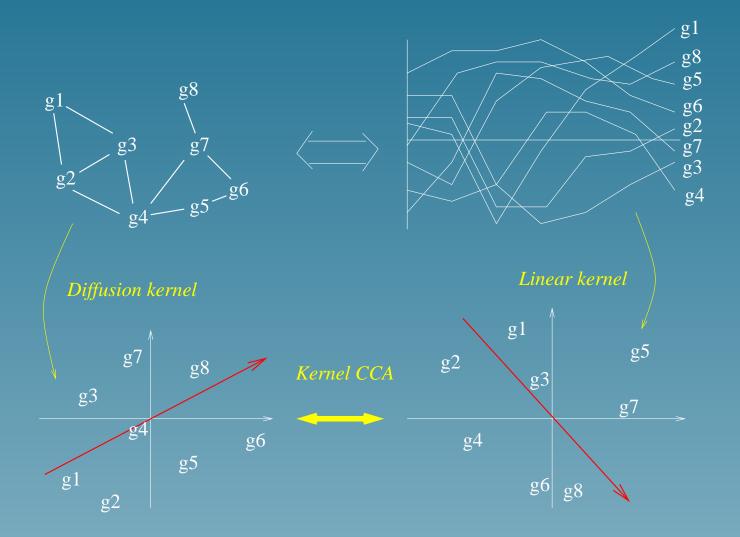
where the parameter δ controls the trade-off between relevance/smoothness on the one hand, correlation on the other hand.

Solving the problem

This formultation is equivalent to a generalized form of CCA (Kernel-CCA, Bach and Jordan, 2002), which is equivalent to the following generalized eigenvector problem

$$\begin{pmatrix} 0 & K_1 K_2 \\ K_2 K_1 & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \rho \begin{pmatrix} K_1^2 + \delta K_1 & 0 \\ 0 & K_2^2 + \delta K_2 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

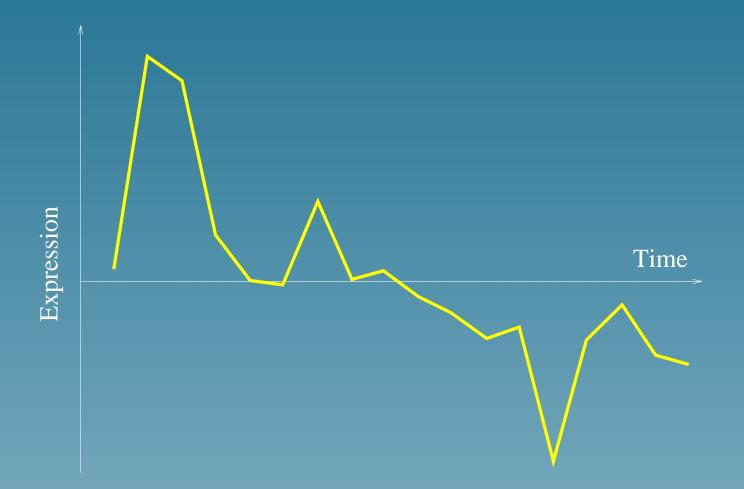
Summary



Data

- Gene network: two genes are linked if the catalyze successive reactions in the KEGG database
- Expression profiles: 18 time series measures for the 6,000 genes of yeast, during two cell cycles

First pattern of expression

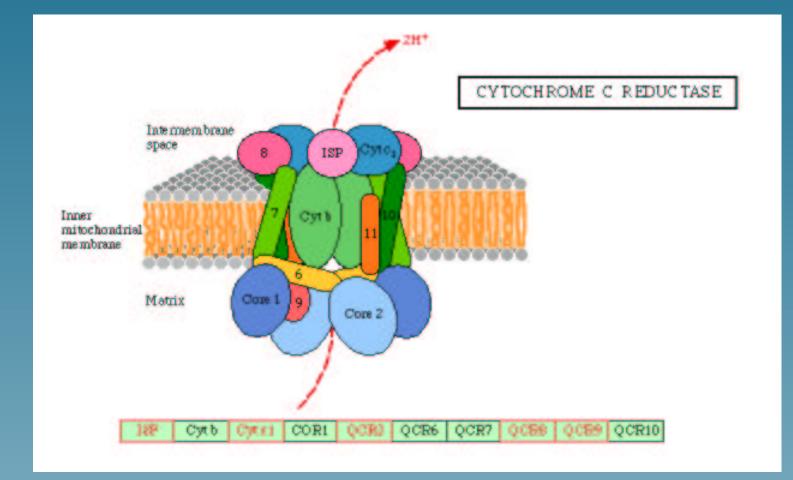


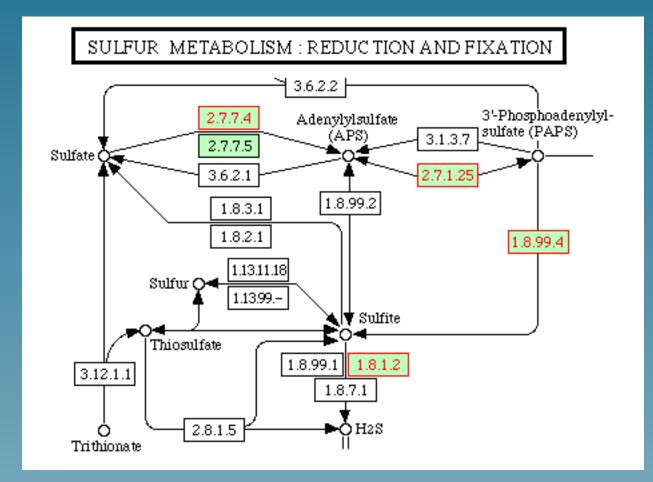
Related metabolic pathways

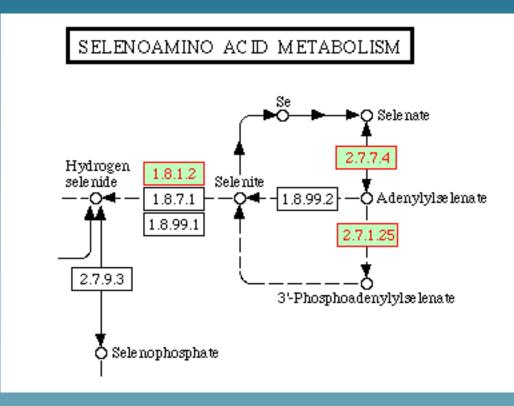
50 genes with highest $s_2 - s_1$ belong to:

- Oxidative phosphorylation (10 genes)
- Citrate cycle (7)
- Purine metabolism (6)
- Glycerolipid metabolism (6)
- Sulfur metabolism (5)

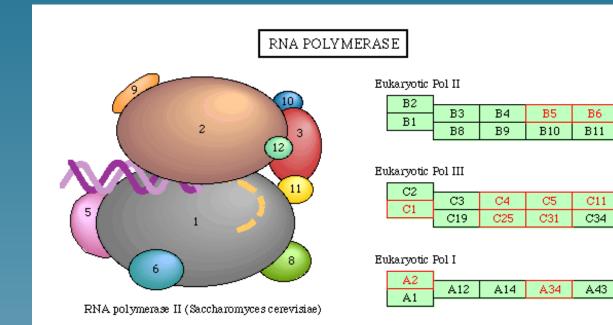
• Selenoaminoacid metabolism (4), etc...







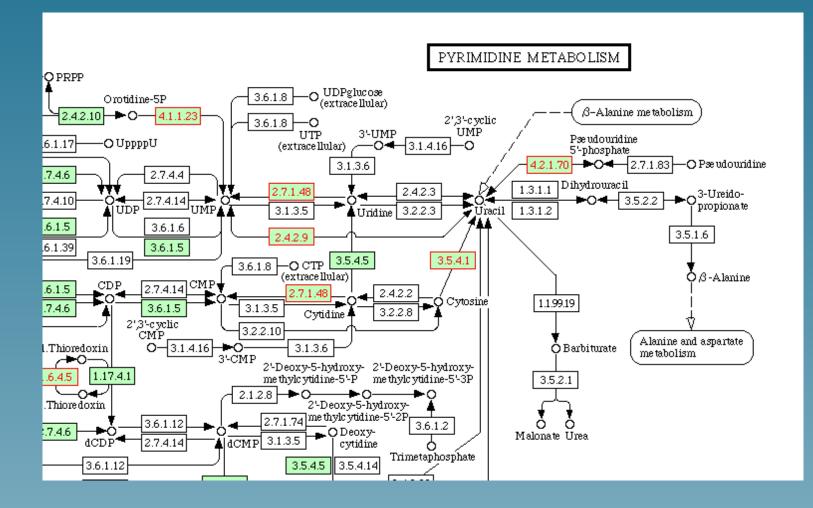
- RNA polymerase (11 genes)
- Pyrimidine metabolism (10)
- Aminoacyl-tRNA biosynthesis (7)
- Urea cycle and metabolism of amino groups (3)
- Oxidative phosphorlation (3)
- ATP synthesis(3) , etc...

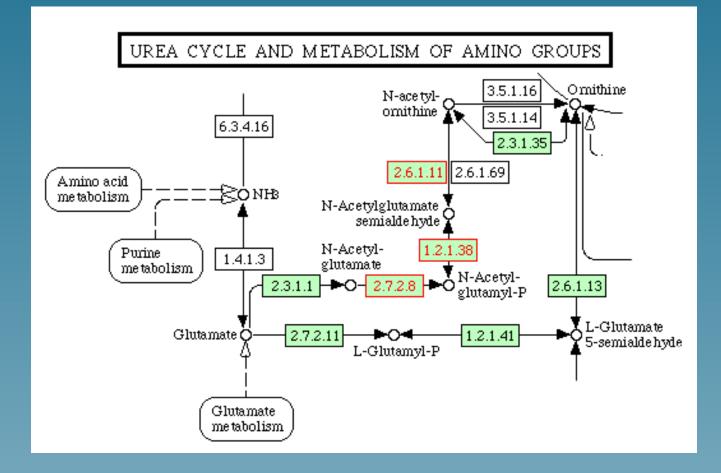


B7

B12

A49





Conclusion

Conclusion

- There is an urgent need for formalisms and computational tools to integrate heterogeneous data
- Kernel methods offer such a framework.
- Few conceptual relationships between genes, but computational efficiency.
- Machine learning and kernel methods are currently boosted by biology.