Kernel methods in computational biology

Jean-Philippe Vert

Ecole des Mines de Paris, France Jean-Philippe.Vert@mines.org

INRIA, April 24, 2003

Outline

1. About kernels
2. What you can do with a kernel
3. Kernelizing the proteome
4. Application: comparison of a protein network and expression data

Part 1

Kernels

Definition

- Let \mathcal{X} be a set (e.g., discrete)
- A kernel is a mapping $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ which is:
\star symetric : $K(x, y)=K(y, x)$,
\star positive semi-definite: $\sum_{i, j} a_{i} a_{j} K\left(x_{i}, x_{j}\right) \geq 0$ for all $a_{i} \in \mathbb{R}$ and $x_{i} \in \mathcal{X}$

Example

- Suppose $\mathcal{X}=\mathbb{R}^{d}$. Then the following is a valid kernel:

$$
K(\vec{x}, \vec{y})=\vec{x} \cdot \vec{y}
$$

- Indeed:

$$
\begin{aligned}
& \star \vec{x} \cdot \vec{y}=\vec{y} \cdot \vec{x} \\
& \star \sum_{i, j} a_{i} a_{j} \overrightarrow{x_{i}} \cdot \overrightarrow{x_{j}}=\left\|\sum_{i} a_{i} \overrightarrow{x_{i}}\right\|^{2} \geq 0
\end{aligned}
$$

Example: kernel in feature space

$$
K\left(g_{i}, g_{j}\right) \stackrel{\text { def }}{=} \vec{\Phi}\left(g_{i}\right) . \vec{\Phi}\left(g_{j}\right)
$$

All kernels are inner product

- If $K(.,$.$) is a kernel, then there exists a Hilbert space \mathcal{H}$ and a mapping $\Phi: \mathcal{X} \rightarrow \mathcal{H}$ such that:

$$
K(x, y)=<\Phi(x), \Phi(y)>_{\mathcal{H}} .
$$

- Proof: by diagonalizing the kernel operator
- Second proof: by explicitly constructing such a \mathcal{H}

RKHS

- A reproducing kernel Hilbert space (RKHS) is a Hilbert space, subset of $\mathbb{R}^{\mathcal{X}}$, defined as the completion of:

$$
\operatorname{span}\{K(x, .), s \in \mathcal{X}\} .
$$

- The inner product between two elements $f=\sum_{i} a_{i} K\left(x_{i},.\right)$ and $g=\sum_{i} b_{i} K\left(x_{i},.\right)$ is defined by:

$$
<f, g>_{\mathcal{H}}=\sum_{i, j} a_{i} b_{j} K\left(x_{i}, x_{i}\right) .
$$

RKHS (2)

- Let $\Phi: \mathcal{X} \rightarrow \mathcal{H}$ defined by $\Phi(x)=K(x,$.$) . Then:$

$$
K(x, y)=<\Phi(x), \Phi(y)>_{\mathcal{H}}=<K(x, .), K(y, .)>_{\mathcal{H}}
$$

- For any $x \in \mathcal{X}$ and $f \in \mathcal{H}$, the following holds:

$$
<f, K(x, .)>_{\mathcal{H}}=f(x) .
$$

RKHS (3)

- We have seen that a kernel K defines a Hilbert structure on (a subset of) $\mathcal{X}^{\mathbb{R}}$
- Conversely: let \mathcal{H} be a Hilbert space, subset of $\mathcal{X}^{\mathbb{R}}$, such that for any $x \in \mathcal{X}$ the evaluation functional $f \in \mathcal{H} \rightarrow f(x)$ be continuous
- Then there exists a kernel K such that \mathcal{H} be its associated RKHS.

Representer theorem (Wahba, 1971)

Let \mathcal{H} be a RKHS with kernel K, and $\left(x_{1}, \ldots, x_{N}\right) \in \mathcal{X}^{N}$. Then the solution of:

$$
\min _{f \in \mathcal{H}} \sum_{i=1}^{N} c\left(x_{i}, f\left(x_{i}\right)\right)+\lambda\|f\|_{\mathcal{H}}^{2}
$$

where $c: \mathcal{X} \times \mathbb{R} \rightarrow \mathbb{R}$, can always be written in the form:

$$
f(x)=\sum_{i=1}^{n} a_{i} K\left(x_{i}, x\right)
$$

Example

For a Gaussian kernel:

$$
K(x, y)=\exp \left(-\frac{\|x-y\|^{2}}{2 \sigma^{2}}\right),
$$

the norm in RKHS is:

$$
\|f\|_{\mathcal{H}}^{2}=\frac{1}{2 \pi \sigma^{2}} \int|\hat{f}(\omega)|^{2} \exp \left(\frac{\sigma^{2}\|\omega\|^{2}}{2}\right) d \omega .
$$

Partie 2

What can you do with a kernel

Overview

Let $K(x, y)$ be a given kernel. Then is it possible to perform various algorithms implicitly in the feature space (thanks to the representer theorem), such as:

- Compute the distance between points
- Principal component analysis (PCA)
- Canonical correlation analysis (CCA)
- Classification by Support vector machines (SVM)

Compute the distance between objects

$\left.\overrightarrow{\phi(} \mathrm{g}_{1}\right) \hat{\ldots}$
 0

$$
\begin{aligned}
d\left(g_{1}, g_{2}\right)^{2} & =\left\|\vec{\Phi}\left(g_{1}\right)-\vec{\Phi}\left(g_{2}\right)\right\|^{2} \\
& =\left(\vec{\Phi}\left(g_{1}\right)-\vec{\Phi}\left(g_{2}\right)\right) \cdot\left(\vec{\Phi}\left(g_{1}\right)-\vec{\Phi}\left(g_{2}\right)\right) \\
& =\vec{\Phi}\left(g_{1}\right) \cdot \vec{\Phi}\left(g_{1}\right)+\vec{\Phi}\left(g_{2}\right) \cdot \vec{\Phi}\left(g_{2}\right)-2 \vec{\Phi}\left(g_{1}\right) \cdot \vec{\Phi}\left(g_{2}\right) \\
d\left(g_{1}, g_{2}\right)^{2} & =K\left(g_{1}, g_{1}\right)+K\left(g_{2}, g_{2}\right)-2 K\left(g_{1}, g_{2}\right)
\end{aligned}
$$

Distance to the center of mass

Center of mass: $\vec{m}=\frac{1}{N} \sum_{i=1}^{N} \vec{\Phi}\left(g_{i}\right)$, hence:

$$
\left\|\vec{\Phi}\left(g_{1}\right)-\vec{m}\right\|^{2}=\vec{\Phi}\left(g_{1}\right) \cdot \vec{\Phi}\left(g_{1}\right)-2 \vec{\Phi}\left(g_{1}\right) \cdot \vec{m}+\vec{m} \cdot \vec{m}
$$

$$
=K\left(g_{1}, g_{1}\right)-\frac{2}{N} \sum_{i=1}^{N} K\left(g_{1}, g_{i}\right)+\frac{1}{N^{2}} \sum_{i, j=1}^{N} K\left(g_{i}, g_{j}\right)
$$

Principal component analysis

It is equivalent to find the eigenvectors of

$$
\begin{aligned}
K & =\left(\vec{\Phi}\left(g_{i}\right) \cdot \vec{\Phi}\left(g_{j}\right)\right)_{i, j=1 \ldots N} \\
& =\left(K\left(g_{i}, g_{j}\right)\right)_{i, j=1 \ldots N}
\end{aligned}
$$

Useful to project the objects on small-dimensional spaces (feature extraction).

Canonical correlation analysis

K_{1} and K_{2} are two kernels for the same objects. CCA can be performed by solving the following generalized eigenvalue problem:

$$
\left(\begin{array}{cc}
0 & K_{1} K_{2} \\
K_{2} K_{1} & 0
\end{array}\right) \vec{\xi}=\rho\left(\begin{array}{cc}
K_{1}^{2} & 0 \\
0 & K_{2}^{2}
\end{array}\right) \vec{\xi}
$$

Useful to find correlations between different representations of the same objects (ex: genes, ...)

Classification: support vector machines (SVM)

Find a linear boundary with large margin and few errors

$$
\left\{\begin{array}{l}
\max _{\vec{\alpha}} \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(g_{i}, g_{j}\right) \\
\forall i=1, \ldots, n \quad 0 \leq \alpha_{i} \leq C \\
\sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{array}\right.
$$

Examples: SVM in bioinformatics

- Gene functional classification from microarry: Brown et al. (2000), Pavlidis et al. (2001)
- Tissue classification from microarray: Mukherje et al. (1999), Furey et al. (2000), Guyon et al. (2001)
- Protein family prediction from sequence: Jaakkoola et al. (1998)
- Protein secondary structure prediction: Hua et al. (2001)
- Protein subcellular localization prediction from sequence: Hua et al. (2001)

Summary

- Once a kernel $K(x, y)$ is given, several analysis can be performed implicitly in the feature space
- These methods are considered currently among the most powerful on many real-world problems
- Modularity: each kernel can work with each method

Part 3

Kernelizing the proteome

What is a gene

- a DNA sequence?
- a primary, secondary or 3D structure of a protein?
- an expression profile?
- a node in a regulatory or interaction network?
- a promoter region?
- a phylogenetic profile?

Kernel for sequences

- spectrum kernel (Eskin et al., 2002)
- Fisher kernel (Jaakkola et al., 1999)
- Pair HMM kernels (Haussler, 1999)
- Very good results for remote homology detection

Kernels for expression profiles

An expression profile is a vector $\vec{\Phi}(x)$:

- Linear kernel: $K(x, y)=\vec{\Phi}(x) \cdot \vec{\Phi}(y)$.
- Polynomial kernel: $K(x, y)=(\vec{\Phi}(x) \cdot \vec{\Phi}(y)+1)^{d}$.
- Gaussian kernel: $K(x, y)=\exp \left(\frac{\|\vec{\Phi}(x)-\vec{\Phi}(y)\|^{2}}{2 \sigma^{2}}\right)$.

Diffusion kernel for the nodes of a graph (Kandor, 2001)

- Let G a graph with vertices \mathcal{X}.
- Let $L=A-D$ be the Laplacian matrix of the graph.
- For any $\lambda>0$, the following is a valid kernel

$$
K=\exp (-\lambda L)
$$

Example (1)

$$
L=\left(\begin{array}{ccccc}
-1 & 0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
1 & 1 & -3 & 1 & 0 \\
0 & 0 & 1 & -2 & 1 \\
0 & 0 & 0 & 1 & -1
\end{array}\right)
$$

Example (2)

$$
K=\exp (-L)=\left(\begin{array}{lllll}
0.49 & 0.12 & 0.23 & 0.10 & 0.03 \\
0.12 & 0.49 & 0.23 & 0.10 & 0.03 \\
0.23 & 0.23 & 0.24 & 0.17 & 0.10 \\
0.10 & 0.10 & 0.17 & 0.31 & 0.30 \\
0.03 & 0.03 & 0.10 & 0.30 & 0.52
\end{array}\right)
$$

More kernels

- Information diffusion kernels (Lafferty and Lebanon, 2002) for probability densities
- Kernels on finite groups (Kondor)
- Kernels for 3D structures

Operations on kernels

- The space of kernels is a closed convex cone (closed under addition, pointwise limit, multiplication by a positive scalar)
- Closed under product and tensor product
- linear combinations can be optimized by semi-definite programming (SDP)
- A kernel is a covariance function which defines a Gaussian process. The information geometry of Gaussian process defines a natural geometry on kernels.

Summary

- Kernels can be built from a priori knowledge, or obtained by various operations from initial kernels
- A kernel can be thought of as a measure of similarity; this can be useful to make new kernels for any given type of data
- Kernel engineering and kernel optimization is an active field of research currently

Part 4

Application: comparing a protein network and expression data

Genes encode proteins which can catalyse chemical reations

Nicotinamide Mononucleotide Adenylyltransferase With Bound Nad+

Chemical reactions are often parts of pathways

From http://www.genome.ad.jp/kegg/pathway

Microarray technology monitors RNA quantity

(From Spellman et al., 1998)

Comparing gene expression and protein network

Are there "correlations"?

Pattern of expression

- In yellow: a candidate pattern , and tbe correlation coefficient with each gene profile

Pattern smoothness

- The correlation function with interesting patterns should vary smoothly on the graph

Pattern relevance

- Interesting patterns involve many genes
- The projection of profiles onto an interesting pattern should capture a lot of variations among profiles
- Relevant patterns can be found by PCA

Problem

Find patterns of expression which are simultaneously

- smooth
- relevant

Pattern relevance

- Let $e(x)$ the profile of gene x
- Let $K_{1}(x, y)=e(x) . e(y)$ be the linear kernel, with RKHS H_{1}.
- The norm ||. $\|_{H_{1}}$ is a relevance functional: the relevance of $f \in H_{1}$ increases when the following decreases:

$$
\frac{\|f\|_{H_{1}}}{\|f\|_{L_{2}}}
$$

Pattern smoothness

- Let $K_{2}(x, y)$ be the diffusion kernel obtained from the gene network, with RKHS H_{2}.
- It can be considered as a discretized version of a Gaussian kernel (solving the heat equation with the graph Laplacian)
- The norm $\|\cdot\|_{H_{2}}$ is a smoothness functional: the smoother a function $f: \mathcal{X} \rightarrow \mathbb{R}$, the larger the function:

$$
\frac{\|f\|_{H_{1}}}{\|f\|_{L_{2}}}
$$

Problem reformulation

Find a linear function f_{1} and a function f_{2} such that:

- f_{1} be relevant : $\left\|f_{1}\right\|_{L^{2}} /\left\|f_{1}\right\|_{H_{1}}$ be large
- f_{2} be smooth : $\left|\mid f_{2}\left\|_{L^{2}} /\right\| f_{2} \|_{H_{2}}\right.$ be large
- f_{1} and f_{2} be correlated :

$$
\frac{f_{1} \cdot f_{2}}{\left\|f_{1}\right\|_{L^{2}}\left\|f_{2}\right\|_{L^{2}}}
$$

be large

Problem reformulation (2)

The three goals can be combined in the following problem:

$$
\max _{f_{1}, f_{2}} \frac{f_{1} \cdot f_{2}}{\left(\left\|f_{1}\right\|_{L^{2}}^{2}+\delta\left\|f_{1}\right\|_{H_{1}}^{2}\right)^{\frac{1}{2}}\left(\left\|f_{2}\right\|_{L^{2}}^{2}+\delta\left\|f_{2}\right\|_{H_{2}}^{2}\right)^{\frac{1}{2}}}
$$

where the parameter δ controls the trade-off between relevance/smoothness on the one hand, correlation on the other hand.

Solving the problem

This formultation is equivalent to a generalized form of CCA (Kernel-CCA, Bach and Jordan, 2002), which is equivalent to the following generalized eigenvector problem

$$
\left(\begin{array}{cc}
0 & K_{1} K_{2} \\
K_{2} K_{1} & 0
\end{array}\right)\binom{\alpha}{\beta}=\rho\left(\begin{array}{cc}
K_{1}^{2}+\delta K_{1} & 0 \\
0 & K_{2}^{2}+\delta K_{2}
\end{array}\right)\binom{\alpha}{\beta}
$$

Summary

Data

- Gene network: two genes are linked if the catalyze successive reactions in the KEGG database
- Expression profiles: 18 time series measures for the 6,000 genes of yeast, during two cell cycles

First pattern of expression

Related metabolic pathways

50 genes with highest $s_{2}-s_{1}$ belong to:

- Oxidative phosphorylation (10 genes)
- Citrate cycle (7)
- Purine metabolism (6)
- Glycerolipid metabolism (6)
- Sulfur metabolism (5)
- Selenoaminoacid metabolism (4) , etc...

Related genes

Related genes

Related genes

SELENOAMINO ACD METABOLISM

Opposite pattern

Related genes

- RNA polymerase (11 genes)
- Pyrimidine metabolism (10)
- Aminoacyl-tRNA biosynthesis (7)
- Urea cycle and metabolism of amino groups (3)
- Oxidative phosphorlation (3)
- ATP synthesis(3) , etc...

Related genes

Related genes

Related genes

Conclusion

Conclusion

- There is an urgent need for formalisms and computational tools to integrate heterogeneous data
- Kernel methods offer such a framework.
- Few conceptual relationships between genes, but computational efficiency.
- Machine learning and kernel methods are currently boosted by biology.

