
1

Kernels for Phylogenetic Trees?

Jean-Philippe.Vert@mines.org

Ecole des Mines de Paris
Computational Biology group

American Institute of Mathematics, May 6, 2003.



2

Outline

1. About kernels

2. What can be done with a kernel

3. Kernel trick example

4. Making kernels for phylogenetic trees



3

Part 1

About kernels
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Definition

• Let X be a set (e.g., Rn, set of trees, ...)

• A (Mercer) kernel is a mapping K : X × X → R which

is:

? symetric : K(x, y) = K(y, x),
? positive semi-definite:

∑
i,j aiajK(xi, xj) ≥ 0 for all

ai ∈ R and xi ∈ X
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Example

• Suppose X = Rd. Then the following is a valid kernel:

K(~x, ~y) = ~x.~y

• Indeed:

? ~x.~y = ~y.~x

?
∑

i,j aiaj ~xi. ~xj = ||
∑

i ai~xi||2 ≥ 0
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Example: kernel in feature space

K(Ti, Tj)
def
= ~Φ(Ti).~Φ(Tj)

T1

T

T

Trees
φ

Feature space

2

1φ(    )

φ(    )T2
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All kernels are inner product

• If K(., .) is a kernel, then there exists a Hilbert space

H and a mapping Φ : X → H such that:

K(x, y) =< Φ(x),Φ(y) >H .

• Proof: by diagonalizing the kernel operator
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Avenues we won’t explore today

• Functional analysis in Reproducing Kernel Hilbert

Spaces (RKHS)

• Solving ill-posed problems via regularization, theory of

splines

• Gaussian processes, spatial statistics
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Part 2

What can you do with a kernel
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Overview

Let K(x, y) be a given kernel. Then is it possible to

perform various algorithms implicitly in the feature space,

such as:

• Computing distances

• Principal component analysis (PCA)

• Canonical correlation analysis (CCA)

• Classification by Support vector machines (SVM)
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Compute the distance between objects

g2φ(    )
0

φ(    )g1 d

d(g1, g2)2 = ‖~Φ(g1)− ~Φ(g2)‖2

=
(
~Φ(g1)− ~Φ(g2)

)
.
(
~Φ(g1)− ~Φ(g2)

)
= ~Φ(g1).~Φ(g1) + ~Φ(g2).~Φ(g2)− 2~Φ(g1).~Φ(g2)

d(g1, g2)2= K(g1, g1) + K(g2, g2)− 2K(g1, g2)
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Distance to the center of mass

m

φ(    )g1

Center of mass: ~m = 1
N

∑N
i=1

~Φ(gi), hence:

‖~Φ(g1)− ~m‖2 = ~Φ(g1).~Φ(g1)− 2~Φ(g1).~m + ~m.~m

= K(g1, g1)−
2
N

N∑
i=1

K(g1, gi) +
1

N2

N∑
i,j=1

K(gi, gj)
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Principal component analysis

PC1PC2

It is equivalent to find the eigenvectors of

K =
(
~Φ(gi).~Φ(gj)

)
i,j=1...N

=
(
K(gi, gj)

)
i,j=1...N

Useful to project the objects on small-dimensional spaces.
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Canonical correlation analysis

CCA2

CCA1

CCA1

CCA2

K1 and K2 are two kernels for the same objects. CCA can be

performed by solving the following generalized eigenvalue problem:(
0 K1K2

K2K1 0

)
~ξ = ρ

(
K2

1 0
0 K2

2

)
~ξ

Compare different representations of the same objects.
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Support vector machines (SVM)

Find a linear boundary with large margin and few errors
max~α

∑n
i=1 αi − 1

2

∑n
i,j=1 αiαjyiyjK(gi, gj)

∀i = 1, . . . , n 0 ≤ αi ≤ C∑n
i=1 αiyi = 0
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Summary

• Kernel trick : once a kernel K(x, y) is given, several

analysis can be performed implicitly in the feature space.

• These methods are VERY powerful on many real-world

problems

• Modularity: each kernel can work with each method
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Part 3

Kernel trick example
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Kernel for aligned positions

AATCGATCGATCGA
ATTCGTTCGATGGA
AATAGTTCCATGCA
TATGGAGCGATTTA

     y     x
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What we know

A T A A

?

?

?

x

We suppose we know a good tree, which defines a

probability distribution (e.g., estimated by maximum

likelihood)
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Evolution pattern

A

A

T

A possible pattern of transmission during evolution

defined by a rooted subtree with labeled nodes.



21

Representation of a profile in terms of
evolution patterns

• Consider all possible evolution patterns (e1, . . . , eN),
and represent each gene x by the vector:

Φ(x) =


√

P (e1)P (x|e1)
...√

P (eN)P (x|eN)


• Very rich representation
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The kernel

K(x, y) =
∑

e evolution pattern

P (e)P (x|e)P (y|e)

• The sum involves an exponential number of terms...

• ...but it can be computed in linear time.
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Part 4

Kernels for phylogenetic trees?
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Several approaches

• Define explicitly an interesting feature space where the

inner product can be computed quickly

• Spectral analysis of the tree space T
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Euclidean tree space

• If T = Rn, the heat kernel is a valid kernel:

K(T1, T2) = exp
(
||T1 − T2||2

2σ2

)
.

• Related to the Laplacian, Brownian motion etc...
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The tree space as a graph

• Nodes are trees, (weighted) edges indicate similarity

between two trees

• The discrete heat kernel is a valid kernel for nodes

• K = exp(−tL), where L is the discrete Laplacian

(Kondor and Lafferty, 2002)
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Example (1)

1

2

3

4

5

L =


−1 0 1 0 0
0 −1 1 0 0
1 1 −3 1 0
0 0 1 −2 1
0 0 0 1 −1


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Example (2)

1

2

3

4

5

K = exp(−L) =


0.49 0.12 0.23 0.10 0.03
0.12 0.49 0.23 0.10 0.03
0.23 0.23 0.24 0.17 0.10
0.10 0.10 0.17 0.31 0.30
0.03 0.03 0.10 0.30 0.52


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Other tree space

• Riemannian manifold

• Finite group (kernel for permutations...)

• etc?
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Conclusion
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Conclusion

• A kernel is more than a distance

• Several kernel methods

• Possibility to engineer kernels and obtain useful

algorithms


