Kernels for Phylogenetic Trees?

Jean-Philippe.Vert@mines.org

Ecole des Mines de Paris
Computational Biology group

American Institute of Mathematics, May 6, 2003.

Outline

1. About kernels
2. What can be done with a kernel
3. Kernel trick example
4. Making kernels for phylogenetic trees

Part 1

About kernels

Definition

- Let \mathcal{X} be a set (e.g., \mathbb{R}^{n}, set of trees, ...)
- A (Mercer) kernel is a mapping $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ which is:
\star symetric : $K(x, y)=K(y, x)$,
\star positive semi-definite: $\sum_{i, j} a_{i} a_{j} K\left(x_{i}, x_{j}\right) \geq 0$ for all $a_{i} \in \mathbb{R}$ and $x_{i} \in \mathcal{X}$

Example

- Suppose $\mathcal{X}=\mathbb{R}^{d}$. Then the following is a valid kernel:

$$
K(\vec{x}, \vec{y})=\vec{x} \cdot \vec{y}
$$

- Indeed:

$$
\begin{aligned}
& \star \vec{x} \cdot \vec{y}=\vec{y} \cdot \vec{x} \\
& \star \sum_{i, j} a_{i} a_{j} \overrightarrow{x_{i}} \cdot \overrightarrow{x_{j}}=\left\|\sum_{i} a_{i} \overrightarrow{x_{i}}\right\|^{2} \geq 0
\end{aligned}
$$

Example: kernel in feature space

All kernels are inner product

- If $K(.,$.$) is a kernel, then there exists a Hilbert space$ \mathcal{H} and a mapping $\Phi: \mathcal{X} \rightarrow \mathcal{H}$ such that:

$$
K(x, y)=<\Phi(x), \Phi(y)>_{\mathcal{H}} .
$$

- Proof: by diagonalizing the kernel operator

Avenues we won't explore today

- Functional analysis in Reproducing Kernel Hilbert Spaces (RKHS)
- Solving ill-posed problems via regularization, theory of splines
- Gaussian processes, spatial statistics

Part 2

What can you do with a kernel

Overview

Let $K(x, y)$ be a given kernel. Then is it possible to perform various algorithms implicitly in the feature space, such as:

- Computing distances
- Principal component analysis (PCA)
- Canonical correlation analysis (CCA)
- Classification by Support vector machines (SVM)

Compute the distance between objects

$$
\begin{aligned}
d\left(g_{1}, g_{2}\right)^{2} & =\left\|\vec{\Phi}\left(g_{1}\right)-\vec{\Phi}\left(g_{2}\right)\right\|^{2} \\
& =\left(\vec{\Phi}\left(g_{1}\right)-\vec{\Phi}\left(g_{2}\right)\right) \cdot\left(\vec{\Phi}\left(g_{1}\right)-\vec{\Phi}\left(g_{2}\right)\right) \\
& =\vec{\Phi}\left(g_{1}\right) \cdot \vec{\Phi}\left(g_{1}\right)+\vec{\Phi}\left(g_{2}\right) \cdot \vec{\Phi}\left(g_{2}\right)-2 \vec{\Phi}\left(g_{1}\right) \cdot \vec{\Phi}\left(g_{2}\right) \\
d\left(g_{1}, g_{2}\right)^{2} & =K\left(g_{1}, g_{1}\right)+K\left(g_{2}, g_{2}\right)-2 K\left(g_{1}, g_{2}\right)
\end{aligned}
$$

Distance to the center of mass

Center of mass: $\vec{m}=\frac{1}{N} \sum_{i=1}^{N} \vec{\Phi}\left(g_{i}\right)$, hence:

$$
\left\|\vec{\Phi}\left(g_{1}\right)-\vec{m}\right\|^{2}=\vec{\Phi}\left(g_{1}\right) \cdot \vec{\Phi}\left(g_{1}\right)-2 \vec{\Phi}\left(g_{1}\right) \cdot \vec{m}+\vec{m} \cdot \vec{m}
$$

$$
=K\left(g_{1}, g_{1}\right)-\frac{2}{N} \sum_{i=1}^{N} K\left(g_{1}, g_{i}\right)+\frac{1}{N^{2}} \sum_{i, j=1}^{N} K\left(g_{i}, g_{j}\right)
$$

Principal component analysis

It is equivalent to find the eigenvectors of

$$
\begin{aligned}
K & =\left(\vec{\Phi}\left(g_{i}\right) \cdot \vec{\Phi}\left(g_{j}\right)\right)_{i, j=1 \ldots N} \\
& =\left(K\left(g_{i}, g_{j}\right)\right)_{i, j=1 \ldots N}
\end{aligned}
$$

Useful to project the objects on small-dimensional spaces.

Canonical correlation analysis

K_{1} and K_{2} are two kernels for the same objects. CCA can be performed by solving the following generalized eigenvalue problem:

$$
\left(\begin{array}{cc}
0 & K_{1} K_{2} \\
K_{2} K_{1} & 0
\end{array}\right) \vec{\xi}=\rho\left(\begin{array}{cc}
K_{1}^{2} & 0 \\
0 & K_{2}^{2}
\end{array}\right) \vec{\xi}
$$

Compare different representations of the same objects.

Support vector machines (SVM)

Find a linear boundary with large margin and few errors

$$
\left\{\begin{array}{l}
\max _{\vec{\alpha}} \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(g_{i}, g_{j}\right) \\
\forall i=1, \ldots, n \quad 0 \leq \alpha_{i} \leq C \\
\sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{array}\right.
$$

Summary

- Kernel trick : once a kernel $K(x, y)$ is given, several analysis can be performed implicitly in the feature space.
- These methods are VERY powerful on many real-world problems
- Modularity: each kernel can work with each method

Part 3

Kernel trick example

Kernel for aligned positions

What we know

We suppose we know a good tree, which defines a probability distribution (e.g., estimated by maximum likelihood)

Evolution pattern

A possible pattern of transmission during evolution defined by a rooted subtree with labeled nodes.

Representation of a profile in terms of evolution patterns

- Consider all possible evolution patterns $\left(e_{1}, \ldots, e_{N}\right)$, and represent each gene x by the vector:

$$
\Phi(x)=\left(\begin{array}{c}
\sqrt{P\left(e_{1}\right)} P\left(x \mid e_{1}\right) \\
\vdots \\
\sqrt{P\left(e_{N}\right)} P\left(x \mid e_{N}\right)
\end{array}\right)
$$

- Very rich representation

The kernel

$$
K(x, y)=\sum_{e \text { evolution pattern }} P(e) P(x \mid e) P(y \mid e)
$$

- The sum involves an exponential number of terms...
- ...but it can be computed in linear time.

Part 4

Kernels for phylogenetic trees?

Several approaches

- Define explicitly an interesting feature space where the inner product can be computed quickly
- Spectral analysis of the tree space \mathcal{T}

Euclidean tree space

- If $\mathcal{T}=\mathbb{R}^{n}$, the heat kernel is a valid kernel:

$$
K\left(T_{1}, T_{2}\right)=\exp \left(\frac{\left\|T_{1}-T_{2}\right\|^{2}}{2 \sigma^{2}}\right) .
$$

- Related to the Laplacian, Brownian motion etc...

The tree space as a graph

- Nodes are trees, (weighted) edges indicate similarity between two trees
- The discrete heat kernel is a valid kernel for nodes
- $K=\exp (-t L)$, where L is the discrete Laplacian (Kondor and Lafferty, 2002)

Example (1)

$$
L=\left(\begin{array}{ccccc}
-1 & 0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
1 & 1 & -3 & 1 & 0 \\
0 & 0 & 1 & -2 & 1 \\
0 & 0 & 0 & 1 & -1
\end{array}\right)
$$

Example (2)

$$
K=\exp (-L)=\left(\begin{array}{lllll}
0.49 & 0.12 & 0.23 & 0.10 & 0.03 \\
0.12 & 0.49 & 0.23 & 0.10 & 0.03 \\
0.23 & 0.23 & 0.24 & 0.17 & 0.10 \\
0.10 & 0.10 & 0.17 & 0.31 & 0.30 \\
0.03 & 0.03 & 0.10 & 0.30 & 0.52
\end{array}\right)
$$

Other tree space

- Riemannian manifold
- Finite group (kernel for permutations...)
- etc?

Conclusion

Conclusion

- A kernel is more than a distance
- Several kernel methods
- Possibility to engineer kernels and obtain useful algorithms

