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Outline

1. SVM and kernel methods

2. Gene function prediction from phylogenetic profiles




Part 1

SVM and kernel methods




Support vector machines




The kernel trick

Implicit definition of z — ®(x) through the kernel:
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Part 2

Gene function prediction from
phylogenetic profiles




Mini introduction

Genes are small parts of the DNA which encode proteins.

About 6,000 genes in the baker yeast, 30,000 in human




Phylogenetic profile

The phylogenetic profile of a gene is a vector of bits which indicates
the presence (1) or absence (0) of the gene in every fully sequenced
genome.

Gene human vyeast ... HIV E. coli




From profile to function

Genes are likely to be transmitted together during evolution when

they participate:

* to a common structural complex,
* to a common pathway.
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Naive approach

Count the number of bits in common:
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What is not used in the naive approach
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Evolution pattern
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Evolution patterns and phylogenetic profiles
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Probabilistic model of gene transmission

The phylogenetic tree as a tree graphical model

Simplified model:
x P(1) =1— P(0) = 0.9, at the root,
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Probabilistic assignment of evolution pattern

For a phylogenetic profile  and an evolution pattern e:

P(e) quantifies how “natural” the pattern is

P(xle) quantifies how likely the pattern e is the “true history’ of
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Representation of a profile in terms of evolution
patterns

Consider all possible evolution patterns (es, ..., en), and represent
each gene = by the vector:
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Comparing two profiles through evolution patterns
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Tree kernel

Kernel methods (SVM, kernel-PCA, kernel-clustering...) only
require the computation of the kernel function:

K(z,y) = ®(x).®(y).
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Kernel computation: trick 1

For any given pattern e, the term:

a(e) = P(e)P(xle)P(yle)
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Kernel computation: trick 2

The sum

D ale)

over all subtrees can also be factorized and computed recursively
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Combining tricks

Both tricks can be combined

K (x,y) can be computed by two post-order traversals of the tree




Gene function prediction with SVM

Profiles for 2465 genes of S. Cerevisiae were computed by BLAST
search (cf Pavlidis et al. 2001), using 24 genomes.

Consensus phylogenetic tree (cf. Liberles et al. 2002) with
simplified probabilistic model of gene transmission
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Results (ROC 50)

Functional class Naive kernel Tree kernel Difference
Amino-acid transporters 0.74 0.81 + 9%
Fermentation 0.68 0.73 + 7%
ABC transporters 0.64 0.87 + 36%
C-compound transport 0.59 0.68 + 15%

Amino-acid biosynthesis 0.37 0.46 + 24%
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A insight into the feature space

PCA can be performed implicitly in the feature space with a kernel
function: kernel-PCA (Scholkopf et al. 1999)

Projecting the genes on the first principal components gives an
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Naive kernel PCA
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Tree kernel PCA
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Extensions

X1,...,X,, discrete r.v.

I,...,I, C{l,...,n} a family of subsets
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Property 1

This kernel interpolates between the diagonal kernel:

Kdz’ag(wa y) — p(ib)é(w, y)
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Property 2

Two objects x and y get closer in the feature space when they share
rare common subparts:

1
K(xay) — Kp'rod(xay) X =
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Linear-time implementations

iid r.v., all possible subsets (PSB 02):

& ® &)
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Linear-time implementations

iid r.v., all possible subsets (PSB 02):

& ® &)
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Linear-time implementations

Tree graphical model, common rooted subtrees

&)
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Linear-time implementations

Tree graphical model, common subtrees

Q)




Part 2

Remote protein homology
detection




34

Motivations

Develop a kernel for strings adapted to protein / DNA sequences

Several methods have been adopted in bioinformatics to measure
the similarity between sequences... but are not valid kernels
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Local alignment

For two strings x and y, a local alignment 7 with gaps is:

AbCD II:II————(IJ'—HII JKL
MNO EFPORGS—1 TUVWX




36

Smith-Waterman (SW) score

SW(x,y) = s s(x,y, )




37

Convolution kernels (Haussler 99)

Let K1 and K5 be two kernels for strings

Their convolution is the following valid kernel:
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3 basic kernels

For the unaligned parts: Ky(z,y) = 1.
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3 basic kernels

For the unaligned parts: Ky(z,y) = 1.

For aligned residues:

0 f 2] # 1or |y| # 1,
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3 basic kernels

For the unaligned parts: Ky(z,y) = 1.

For aligned residues:

0 f 2] # 1or |y| # 1,
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Combining the kernels

Detecting local alignments of exactly n residues:

(n—1)
K(ﬁ)(x,y):Ko*(Kéﬁ)*KéB)) * K x K.

(1)
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Combining the kernels

Detecting local alignments of exactly n residues:
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Properties

Kfl(@y)= Y exp(Bs(a,y,m)),

mell(z,y)
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Properties

Kfl(@y)= Y exp(Bs(a,y,m)),

mell(z,y)
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Kernel computation
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SCOP superfamily recognition benchmark

SVM-LA —+—
SVM-pairwise ---x---
SVM-Mismatch ------
SVM-Fisher - 7

given performance




Part 3

Detection of active metabolic
pathways from gene expression







Chemical reactions are often parts of pathways
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Microarray technology monitors RNA quantity
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Comparing gene expression and protein network
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Pattern of expression
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Pattern smoothness
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Pattern relevance

Interesting patterns involve many genes

The projection of profiles onto an interesting pattern should capture
a lot of variations among profiles
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Problem

Find patterns of expression which are simultaneously

smooth
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From kernels to RKHS

To each kernel K is associated a reproducing kernel Hilbert space
(RKHS), subset of R*, defined as the completion of:

span{K(x,.),z € X}.




53

Pattern relevance

Let e(x) the profile of gene x

Let Ki(x,y) = e(x).e(y) be the linear kernel, with RKHS H;.
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Pattern smoothness

Let K5(x,y) be the diffusion kernel obtained from the gene network,
with RKHS Ho.

It can be considered as a discretized version of a Gaussian kernel
(solving the heat equation with the graph Laplacian)
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Problem reformulation

Find a linear function f; and a function f5 such that:

f1 be relevant : || f1||z2/|| f1||z, be large

fo be smooth : ||fa||z2/|| f2||m, be large
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Problem reformulation (2)

The three goals can be combined in the following problem:

f1-f2

max

N —=

f1.f2 3
(1121122 + 011£1113, ) (12112 + 011 fol 3, )
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Solving the problem

This formultation is equivalent to a generalized form of CCA
(Kernel-CCA, Bach and Jordan, 2002), which is equivalent to the
following generalized eigenvector problem

0 K]_K2 « K12—|—5K1 0 87
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Summary
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Data

Gene network: two genes are linked if the catalyze successive
reactions in the KEGG database

Expression profiles: 18 time series measures for the 6,000 genes of
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First pattern of expression
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Related metabolic pathways

50 genes with highest so — s belong to:

Oxidative phosphorylation (10 genes)

Citrate cycle (7)
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Related genes

AULFUE METAEOQLISK : REDUC TION AND FIXATION
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Related genes
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Opposite pattern

MM

pression

Time




66

Related genes

RNA polymerase (11 genes)

Pyrimidine metabolism (10)




Related genes

ENA POLYME
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Extensions

Can be used to extract features from expression profiles (preprint
2002)

Can be generalized to more than 2 datasets and other kernels
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Conclusion
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Conclusion

Kernels offer a versatile framework to represent biological data

Increasing library of kernels and kernel methods




