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Outline

1. SVM and kernel methods

2. Gene function prediction from phylogenetic profiles

3. Remote protein homology detection

4. Detection of active metabolic pathways from gene expression data
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Part 1

SVM and kernel methods
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Support vector machines

φ

• Objects to classify x mapped to a feature space

• Largest margin separating hyperplan in the feature space
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The kernel trick

• Implicit definition of x → Φ(x) through the kernel:

K(x, y)
def
= < Φ(x),Φ(y) >
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The kernel trick

• Implicit definition of x → Φ(x) through the kernel:

K(x, y)
def
= < Φ(x),Φ(y) >

• Simple kernels can represent complex Φ

• For a given kernel, not only SVM but also clustering, PCA, ICA...

possible in the feature space = kernel methods
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Part 2

Gene function prediction from
phylogenetic profiles

(ISMB 02)
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Mini introduction

• Genes are small parts of the DNA which encode proteins.

• About 6,000 genes in the baker yeast, 30,000 in human

• The sequences of the genes are (almost) known (sequencing projets)

• Next big challenge: understand their functions
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Phylogenetic profile

• The phylogenetic profile of a gene is a vector of bits which indicates

the presence (1) or absence (0) of the gene in every fully sequenced

genome.

Gene human yeast . . . HIV E. coli

YAL001C 1 1 . . . 0 0

YAB002W 0 0 . . . 0 1
... ... ... ... ... ...

• Can be estimated in silico by sequence similarity search
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From profile to function

• Genes are likely to be transmitted together during evolution when

they participate:

? to a common structural complex,

? to a common pathway.

• Consequently genes with similar phylogenetic profiles are likely to

have similar functions

• How to infer the function from the profile?
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Naive approach

• Count the number of bits in common:

0 0 01 1

x

y

1 1 10 0

1 10 0 0

1 10 0 0

s(x, y) = 5

• Cluster or use k-NN for gene function prediction with this similarity

measure (Pellegrini et al., 1999)
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What is not used in the naive approach

0 0 01 1

x

y

1 1 10 0

1 10 0 0

1 10 0 0

The knowledge of the phylogenetic tree.
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Evolution pattern

1

1
1

0

0

1

1

A possible pattern of transmission during evolution defined by a

rooted subtree with nodes labeled 0 or 1.
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Evolution patterns and phylogenetic profiles

1

1

1

0

1

10

1

x 1 1 10 01 10 0 0

Is it the true story? We don’t know, but...
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Probabilistic model of gene transmission

• The phylogenetic tree as a tree graphical model

• Simplified model:

? P (1) = 1− P (0) = 0.9, at the root,

? Along each branch transmission follows the transition matrix:(
0.9 0.1
0.1 0.9

)
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Probabilistic assignment of evolution pattern

For a phylogenetic profile x and an evolution pattern e:

• P (e) quantifies how “natural” the pattern is

• P (x|e) quantifies how likely the pattern e is the “true history” of

the profile x
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Representation of a profile in terms of evolution
patterns

• Consider all possible evolution patterns (e1, . . . , eN), and represent

each gene x by the vector:

Φ(x) =


√

P (e1)P (x|e1)
...√

P (eN)P (x|eN)


• Comparing Φ(x) and Φ(y) gives a precise idea of which evolution

patterns are shared or not by x and y.
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Comparing two profiles through evolution patterns

1

1
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x
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1 1 10 0

1 10 0 0

1 10 0 0
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Tree kernel

• Kernel methods (SVM, kernel-PCA, kernel-clustering...) only

require the computation of the kernel function:

K(x, y) = Φ(x).Φ(y).

• In our case we obtain the tree kernel:

K(x, y) =
∑

e

P (e)P (x|e)P (y|e),

where the sum is over all possible evolution patterns.
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Kernel computation: trick 1

• For any given pattern e, the term:

α(e) = P (e)P (x|e)P (y|e)

can be factorized and computed recursively by working up the tree

from the leaves

• Classical trick for computing likelihood with tree graphical models,

cf. Felsenstein’s algorithm
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Kernel computation: trick 2

• The sum ∑
e

α(e)

over all subtrees can also be factorized and computed recursively

by working up the tree from the leaves

• Similar in spirit to the Context Tree Weighting algorithm (Willems

et al., 1995).
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Combining tricks

• Both tricks can be combined

• K(x, y) can be computed by two post-order traversals of the tree

• The complexity is linear with the length of the profile.
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Gene function prediction with SVM

• Profiles for 2465 genes of S. Cerevisiae were computed by BLAST

search (cf Pavlidis et al. 2001), using 24 genomes.

• Consensus phylogenetic tree (cf. Liberles et al. 2002) with

simplified probabilistic model of gene transmission

• SVM trained to predict all functional classes of the MIPS catalog

with at least 10 genes (cross-validation)

• Comparison of the tree kernel with the naive kernel
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Results (ROC 50)

Functional class Naive kernel Tree kernel Difference

Amino-acid transporters 0.74 0.81 + 9%
Fermentation 0.68 0.73 + 7%
ABC transporters 0.64 0.87 + 36%
C-compound transport 0.59 0.68 + 15%
Amino-acid biosynthesis 0.37 0.46 + 24%
Amino-acid metabolism 0.35 0.32 - 9%

Tricarboxylic-acid pathway 0.33 0.48 + 45%
Transport Facilitation 0.33 0.28 - 15%
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A insight into the feature space

• PCA can be performed implicitly in the feature space with a kernel

function: kernel-PCA (Scholkopf et al. 1999)

• Projecting the genes on the first principal components gives an

idea of the shape of the features space
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Naive kernel PCA

Amino−acid transporters
Fermentation
ABC transporters
C−compound, carbonhydrate transport

PC1

PC2

PC3

PC4
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Tree kernel PCA

Amino−acid transporters
Fermentation
ABC transporters
C−compound, carbonhydrate transport

PC1

PC2 PC4

PC3
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Extensions

• X1, . . . , Xn discrete r.v.

• I1, . . . , Iv ⊂ {1, . . . , n} a family of subsets

• Interpolated kernel:

K(x, y) =
1
v

v∑
i=1

p(xIi
)p(yIi

)× p(xIc
i
)δ(xIc

i
, xIc

i
)
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Property 1

This kernel interpolates between the diagonal kernel:

Kdiag(x, y) = p(x)δ(x, y)

and the product kernel:

Kprod(x, y) = p(x)p(y).
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Property 2

Two objects x and y get closer in the feature space when they share

rare common subparts:

K(x, y) = Kprod(x, y)× 1
v

v∑
i=1

δ(xIi
, yIi

)
p(xIi

)
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Linear-time implementations

• iid r.v., all possible subsets (PSB 02):

X2 X3 X4 X5X1
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Linear-time implementations

• iid r.v., all possible subsets (PSB 02):

X2 X3 X4 X5X1

• Markov model, common blocks

X2 X3 X4 X5X1
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Linear-time implementations

• Tree graphical model, common rooted subtrees

X2

X3

X4

X5
X1
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Linear-time implementations

• Tree graphical model, common subtrees

X1

X2

X3

X5

X4
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Part 2

Remote protein homology
detection

(with S. Hiroto, N. Ueda, T. Akutsu, preprint 2003)
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Motivations

• Develop a kernel for strings adapted to protein / DNA sequences

• Several methods have been adopted in bioinformatics to measure

the similarity between sequences... but are not valid kernels

• How to mimic them?
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Local alignment

• For two strings x and y, a local alignment π with gaps is:

ABCD EF−−−G−HI JKL

MNO EFPQRGS−I TUVWX

• The score is:

s(x, y, π) = s(E,E) + s(F, F ) + s(G, G) + s(I, I)− s(gaps)
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Smith-Waterman (SW) score

SW (x, y) = max
π∈Π(x,y)

s(x, y, π)

• Computed by dynamic programming

• Not a kernel in general
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Convolution kernels (Haussler 99)

• Let K1 and K2 be two kernels for strings

• Their convolution is the following valid kernel:

K1 ? K2(x, y) =
∑

x1x2=x,y1y2=y

K1(x1, y1)K2(x2, y2)
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3 basic kernels

• For the unaligned parts: K0(x, y) = 1.
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3 basic kernels

• For the unaligned parts: K0(x, y) = 1.

• For aligned residues:

K(β)
a (x, y) =

{
0 if |x| 6= 1 or |y| 6= 1,

exp (βs(x, y)) otherwise
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3 basic kernels

• For the unaligned parts: K0(x, y) = 1.

• For aligned residues:

K(β)
a (x, y) =

{
0 if |x| 6= 1 or |y| 6= 1,

exp (βs(x, y)) otherwise

• For gaps:

K(β)
g (x, y) = exp [β (g(|x|) + g(|y|))]
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Combining the kernels

• Detecting local alignments of exactly n residues:

K
(β)
(n)(x, y) = K0 ?

(
K(β)

a ? K(β)
g

)(n−1)

? K(β)
a ? K0.
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Combining the kernels

• Detecting local alignments of exactly n residues:

K
(β)
(n)(x, y) = K0 ?

(
K(β)

a ? K(β)
g

)(n−1)

? K(β)
a ? K0.

• Considering all possible local alignments:

K
(β)
LA =

∞∑
i=0

K
(β)
(i) .
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Properties

K
(β)
LA(x, y) =

∑
π∈Π(x,y)

exp (βs(x, y, π)) ,



40

Properties

K
(β)
LA(x, y) =

∑
π∈Π(x,y)

exp (βs(x, y, π)) ,

lim
β→+∞

1
β

lnK
(β)
LA(x, y) = SW (x, y).
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Kernel computation

Y

X0

B

Y0

M

X X2

Y2

E

d

d

d

e

e
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SCOP superfamily recognition benchmark
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Part 3

Detection of active metabolic
pathways from gene expression

data
(NIPS 02)
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Genes encode proteins which can catalyse chemical
reations

Nicotinamide Mononucleotide Adenylyltransferase With Bound Nad+
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Chemical reactions are often parts of pathways

From http://www.genome.ad.jp/kegg/pathway
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Microarray technology monitors RNA quantity

(From Spellman et al., 1998)
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Comparing gene expression and protein network

g8

g3 g7

g6
g5g4

g1

g1

g5
g6

g7
g3
g4

g8

g2

Gene network Expression profiles

g2

Are there “correlations”?
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Pattern of expression

g1
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g3
g4

g8

g2

−0.8
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+0.4
−0.7
+0.5
−0.4

+0.1

• In yellow: a candidate pattern , and the correlation coefficient with

each gene profile
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Pattern smoothness
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• The correlation function with interesting patterns should vary

smoothly on the graph
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Pattern relevance

• Interesting patterns involve many genes

• The projection of profiles onto an interesting pattern should capture

a lot of variations among profiles

• Relevant patterns can be found by PCA
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Problem

Find patterns of expression which are simultaneously

• smooth

• relevant
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From kernels to RKHS

• To each kernel K is associated a reproducing kernel Hilbert space

(RKHS), subset of RX , defined as the completion of:

span {K(x, .), x ∈ X} .

• The norm of a function f =
∑

i aiK(xi, .) in the RKHS is:

||f ||H =
∑
i,j

aiajK(xi, xj).
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Pattern relevance

• Let e(x) the profile of gene x

• Let K1(x, y) = e(x).e(y) be the linear kernel, with RKHS H1.

• The norm ||.||H1 is a relevance functional: the relevance of f ∈ H1

increases when the following decreases:

||f ||H1

||f ||L2
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Pattern smoothness

• Let K2(x, y) be the diffusion kernel obtained from the gene network,

with RKHS H2.

• It can be considered as a discretized version of a Gaussian kernel

(solving the heat equation with the graph Laplacian)

• The norm ||.||H2 is a smoothness functional: the smoother a

function f : X → R, the larger the function:

||f ||H1

||f ||L2
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Problem reformulation

Find a linear function f1 and a function f2 such that:

• f1 be relevant : ||f1||L2/||f1||H1 be large

• f2 be smooth : ||f2||L2/||f2||H2 be large

• f1 and f2 be correlated :

f1.f2

||f1||L2||f2||L2

be large
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Problem reformulation (2)

The three goals can be combined in the following problem:

max
f1,f2

f1.f2(
||f1||2L2 + δ||f1||2H1

)1
2
(
||f2||2L2 + δ||f2||2H2

)1
2

where the parameter δ controls the trade-off between

relevance/smoothness on the one hand, correlation on the other

hand.
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Solving the problem

This formultation is equivalent to a generalized form of CCA

(Kernel-CCA, Bach and Jordan, 2002), which is equivalent to the

following generalized eigenvector problem(
0 K1K2

K2K1 0

) (
α

β

)
= ρ

(
K2

1 + δK1 0
0 K2

2 + δK2

) (
α

β

)
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Summary

g8

g3 g7

g6
g5g4

g1

g1

g5
g6

g7
g3
g4

g8

g2

g2

g6

g7 g8
g3

g1

g4

g5

g1

g4

g6

g7

g8

g3
g5g2

g2

Kernel CCA

Diffusion kernel
Linear kernel
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Data

• Gene network: two genes are linked if the catalyze successive

reactions in the KEGG database

• Expression profiles: 18 time series measures for the 6,000 genes of

yeast, during two cell cycles
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First pattern of expression
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Related metabolic pathways

50 genes with highest s2 − s1 belong to:

• Oxidative phosphorylation (10 genes)

• Citrate cycle (7)

• Purine metabolism (6)

• Glycerolipid metabolism (6)

• Sulfur metabolism (5)

• Selenoaminoacid metabolism (4) , etc...
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Related genes
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Related genes
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Related genes



65

Opposite pattern
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Related genes

• RNA polymerase (11 genes)

• Pyrimidine metabolism (10)

• Aminoacyl-tRNA biosynthesis (7)

• Urea cycle and metabolism of amino groups (3)

• Oxidative phosphorlation (3)

• ATP synthesis(3) , etc...
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Related genes
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Related genes
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Related genes
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Extensions

• Can be used to extract features from expression profiles (preprint

2002)

• Can be generalized to more than 2 datasets and other kernels

• Can be used to extract clusters of genes (e.g., operon detection,

ISMB 03 with Y. Yamanishi, A. Nakaya and M. Kanehisa)
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Conclusion
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Conclusion

• Kernels offer a versatile framework to represent biological data

• Increasing library of kernels and kernel methods

• Encouraging results on real-world applications

• Candidate to play an important role in learning from heterogeneous

data


