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Overview

1. Pattern recognition and Support Vector Machines

2. Signal peptide detection
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The pattern recognition problem
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Pattern recognition examples

Medical diagnosis (e.g., from microarrays)

Drugability /activity of chemical compouds
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Support Vector Machines for pattern recognition
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Support Vector Machines for pattern recognition
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Support Vector Machines for pattern recognition
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Support Vector Machines for pattern recognition
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The kernel trick for SVM

The separation can be found without knowing ®(x). Only the
following kernel matters:
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LCIES

A kernel can be thought of as a measure of similarity.

There are mathematical conditions to ensure that a function
K(x,y) is a valid kernel (it must be symmetric positive
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Advantages of SVM

Works well on real-world applications

Large dimensions, noise OK




Partie 2

Signal peptide cleavage site
detection
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Secretory pathway
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The classification problem(s)

Problem 1 :
Given an aminoacids windows:

[ZIZ_S, L_7yee. s L_1,T1, ZIIQ] = ILGSTLLACS
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The classification problem(s)

Problem 1 :
Given an aminoacids windows:

[CIJ_g, L_7yee. s L_1,T1, ZCQ] = ILGSTLLACS
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Current methods : Problem 1

Weight matrix method: compute the score of a window by:

s(ILGSTLLACS) = s_g(I) + s_7(L) + . .. + 52(S)
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SVM approach (PSB 2002)

We need a kernel K (wq,ws) between 2 windows

It is possible to transform a weight matrix into a kernel (technical,
see paper)
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Result: ROC curves
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Remarks

The weight matrix is used to define the geometry of the feature
space (through the kernel)

The SVM algorithm learns a linear discrimination in this space
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Problem 2: signal peptide detection

Classical approach: move a window along the sequence, check
whether it looks like a typical signal peptide

SVM approach: we need a string kernel K (pi,p2) for variable-
length protein sequences
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Local alignment kernel

For two strings x and y, a local alignment 7 with gaps is:

ABbCD II:II————(IJ'—HII JKL
MNO EFPORGS—1 TUVWX
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Smith-Waterman (SW) score

SW(x,y) = max s(x,y, )

This is not a kernel in general
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SCOP superfamily recognition benchmark

SVM-LA —+—
SVM-pairwise ---x---
SVM-Mismatch ------
SVM-Fisher - 7

given performance
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Partie 3

Virtual screening of small
molecules
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The problem

Objects = chemical compounds (formula, structure..)
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Classical approaches

Use molecular descriptors to represent the compouds as vectors

Select a limited numbers of relevant descriptors
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SVM approach

We need a kernel K (c1,cz) between compounds
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SVM approach

We need a kernel K (c1,cz) between compounds

One solution: inner product between vectors
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SVM approach

We need a kernel K (c1,cz) between compounds

One solution: inner product between vectors
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Example: graph kernel
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Example: graph kernel
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Example: graph kernel
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Example: graph kernel

Let H; be a random path of a compound ¢;

Let Hy be a random path of a compound cs
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Remarks

Interesting  preliminary results in  mutagenesis prediction
(benchmark dataset)
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Interesting  preliminary results in  mutagenesis prediction
(benchmark dataset)

Two compounds are compared in terms of their common
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Remarks

Interesting  preliminary results in  mutagenesis prediction
(benchmark dataset)

Two compounds are compared in terms of their common




Partie 4

Analysis of microarray data with
pathways information







Chemical reactions are often parts of pathways
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Microarray technology monitors RNA quantity
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Comparing gene expression and protein network
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Pattern of expression
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Pattern smoothness
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Summary
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Data

Gene network: two genes are linked if the catalyze successive
reactions in the KEGG database

Expression profiles: 18 time series measures for the 6,000 genes of
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First pattern of expression
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Related metabolic pathways

50 genes with highest so — s belong to:

Oxidative phosphorylation (10 genes)

Citrate cycle (7)
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Related genes
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Related genes

RNA polymerase (11 genes)

Pyrimidine metabolism (10)
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Extensions

Can be used to extract features from expression profiles (preprint
2002)

Can be generalized to more than 2 datasets and other kernels
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Conclusion
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Conclusion

Kernels offer a versatile framework to represent biological data

SVM and kernel methods work well on real-life problems, in
particular in high dimension and with noise




