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Part 1

Kernels




Definition

Let X be a set (e.g., discrete)

A kernel is a mapping K : X x X — R which is:
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Suppose X = R?. Then the following is a valid kernel:

K(Z,y) = 2.5




Example: kernel in feature space

K(gi,9;) < (9:).8(g;)
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All kernels are inner product

If K(.,.) is a kernel, then there exists a Hilbert space H and a
mapping ¢ : X — 'H such that:

K(z,y) =< @(z), ®(y) >n -




RKHS

A reproducing kernel Hilbert space (RKHS) is a Hilbert space,
subset of R, defined as the completion of:

span{K(z,.),s € X}.




RKHS (2)

Let & : X — H defined by ®(x) = K(x,.). Then:

K(z,y) =< ®(x),®(y) >n=< K(z,.),K(y,.) >x




10

RKHS (3)

We have seen that a kernel K defines a Hilbert structure on (a
subset of ) A%

Conversely: let ‘H be a Hilbert space, subset of XR such that for




11

Representer theorem (Wahba, 1971)

Let H be a RKHS with kernel K, and (z1,...,zx5) € XY. Then the
solution of:

N
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For a Gaussian kernel:

K(z.y) — exp (_||:1; - y||2) ’
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Partie 2

What can you do with a kernel
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Overview

Let K (x,y) be a given kernel. Then is it possible to perform various
algorithms implicitly in the feature space (thanks to the representer
theorem), such as:

Compute the distance between points
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Compute the distance between objects
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Distance to the center of mass

=

g,
e
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Principal component analysis
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Canonical correlation analysis

K, and K5 are two kernels for the same objects. CCA can be
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Classification: support vector machines (SVM)
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Examples: SVM in bioinformatics

Gene functional classification from microarry: Brown et al. (2000),
Pavlidis et al. (2001)

Tissue classification from microarray: Mukherje et al. (1999),
Furey et al. (2000), Guyon et al. (2001)
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Summary

Once a kernel K(z,y) is given, several analysis can be performed
implicitly in the feature space

These methods are considered currently among the most powerful
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Part 3

Local alignment kernel for strings

(with S. Hiroto, N. Ueda, T. Akutsu, preprint 2003)
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Motivations

Develop a kernel for strings adapted to protein / DNA sequences

Several methods have been adopted in bioinformatics to measure
the similarity between sequences... but are not valid kernels
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Related work

Spectrum kernel (Leslie et al.):
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Related work

Spectrum kernel (Leslie et al.):

—k

S

N O(i T Uy Uy )

S

K(X1.. - T, Vi Yn) =

_d
i=1 j=1




25

Local alignment

For two strings x and y, a local alignment 7 with gaps is:

AbCD II:II————(IJ'—HII JKL
MNO EEPORGS—1 TUVWX
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Smith-Waterman (SW) score

SW(x,y) = s s(x,y, )
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Convolution kernels (Haussler 99)

Let K1 and K5 be two kernels for strings

Their convolution is the following valid kernel:
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3 basic kernels

For the unaligned parts: Ky(z,y) = 1.
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3 basic kernels

For the unaligned parts: Ky(z,y) = 1.

For aligned residues:

0 f 2] # 1or |y| # 1,
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3 basic kernels

For the unaligned parts: Ky(z,y) = 1.

For aligned residues:

0 f 2] # 1or |y| # 1,
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Combining the kernels

Detecting local alignments of exactly n residues:

(n—1)
K(ﬁ)(x,y):Ko*(Kéﬁ)*KéB)) * K x K.

(1)
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Combining the kernels

Detecting local alignments of exactly n residues:

(n—1)
K(ﬁ)(x,y):Ko*(Kéﬁ)*KéB)) * K x K.

(1)
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Properties

Kfl(@y)= Y exp(Bs(a,y,m)),

mell(z,y)
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Properties

Kfl(@y)= Y exp(Bs(a,y,m)),

mell(z,y)
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Kernel computation
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Application: remote homology detection




33

SCOP database

SCOP
Fold

Super family C{
Family OO
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A benchmark experiment

Can we predict the superfamily of a domain if we have not seen
any member of its family before?
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A benchmark experiment

Can we predict the superfamily of a domain if we have not seen
any member of its family before?

During learning: remove a family and learn the difference between
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A benchmark experiment

Can we predict the superfamily of a domain if we have not seen
any member of its family before?

During learning: remove a family and learn the difference between
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SCOP superfamily recognition benchmark

SVM-LA —+—
SVM-pairwise ---x---
SVM-Mismatch ------
SVM-Fisher - 7

given performance




Part 4

Analysis of microarray data with
pathways information







Chemical reactions are often parts of pathways

\ memwbolizm )

O xalosuce nate O

From http://www.genome.ad.jp/kegg/pathway
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Microarray technology monitors RNA quantity
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Comparing gene expression and protein network

\\\ VAN
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Pattern of expression
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Pattern smoothness
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Pattern relevance

Interesting patterns involve many genes

The projection of profiles onto an interesting pattern should capture
a lot of variations among profiles
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Problem

Find patterns of expression which are simultaneously

smooth
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Pattern relevance

Let e(x) the profile of gene x

Let Ki(x,y) = e(x).e(y) be the linear kernel, with RKHS H;.
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Pattern smoothness

Let K5(x,y) be the diffusion kernel obtained from the gene network,
with RKHS Ho.

It can be considered as a discretized version of a Gaussian kernel
(solving the heat equation with the graph Laplacian)
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Problem reformulation

Find a linear function f; and a function f5 such that:

f1 be relevant : || f1||z2/|| f1||z, be large

fo be smooth : ||fa||z2/|| f2||m, be large
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Problem reformulation (2)

The three goals can be combined in the following problem:

f1-f2

max

N —=

f1.f2 3
(1121122 + 011£1113, ) (12112 + 011 fol 3, )
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Solving the problem

This formultation is equivalent to a generalized form of CCA
(Kernel-CCA, Bach and Jordan, 2002), which is equivalent to the
following generalized eigenvector problem

0 K]_K2 « K12—|—5K1 0 87
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Summary
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Data

Gene network: two genes are linked if the catalyze successive
reactions in the KEGG database

Expression profiles: 18 time series measures for the 6,000 genes of
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First pattern of expression
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Related metabolic pathways

50 genes with highest so — s belong to:

Oxidative phosphorylation (10 genes)

Citrate cycle (7)
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Related genes

AULFUE METAEOQLISK : REDUC TION AND FIXATION
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Opposite pattern
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Related genes

RNA polymerase (11 genes)

Pyrimidine metabolism (10)




Related genes
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Extensions

Can be used to extract features from expression profiles (preprint
2002)

Can be generalized to more than 2 datasets and other kernels
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Conclusion
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Conclusion

SVM and kernel methods work well on real-life problems, in
particular in high dimension and with noise

Kernels can be engineered for non-vectorial data




