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Part 1

Kernels
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Definition

• Let X be a set (e.g., discrete)

• A kernel is a mapping K : X × X → R which is:

? symetric : K(x, y) = K(y, x),
? positive semi-definite:

∑
i,j aiajK(xi, xj) ≥ 0 for all ai ∈ R and

xi ∈ X
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Example

• Suppose X = Rd. Then the following is a valid kernel:

K(~x, ~y) = ~x.~y

• Indeed:

? ~x.~y = ~y.~x

?
∑

i,j aiaj ~xi. ~xj = ||
∑

i ai~xi||2 ≥ 0
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Example: kernel in feature space

K(gi, gj)
def
= ~Φ(gi).~Φ(gj)

g1

g2φ(    )

φ(    )g1

g2

Genes
φ

Feature space
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All kernels are inner product

• If K(., .) is a kernel, then there exists a Hilbert space H and a

mapping Φ : X → H such that:

K(x, y) =< Φ(x),Φ(y) >H .

• Proof: by diagonalizing the kernel operator

• Second proof: by explicitly constructing such a H
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RKHS

• A reproducing kernel Hilbert space (RKHS) is a Hilbert space,

subset of RX , defined as the completion of:

span {K(x, .), s ∈ X} .

• The inner product between two elements f =
∑

i aiK(xi, .) and

g =
∑

i biK(xi, .) is defined by:

< f, g >H=
∑
i,j

aibjK(xi, xi).
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RKHS (2)

• Let Φ : X → H defined by Φ(x) = K(x, .). Then:

K(x, y) =< Φ(x),Φ(y) >H=< K(x, .),K(y, .) >H

• For any x ∈ X and f ∈ H, the following holds:

< f, K(x, .) >H= f(x).



10

RKHS (3)

• We have seen that a kernel K defines a Hilbert structure on (a

subset of) XR

• Conversely: let H be a Hilbert space, subset of XR, such that for

any x ∈ X the evaluation functional f ∈ H → f(x) be continuous

• Then there exists a kernel K such that H be its associated RKHS.
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Representer theorem (Wahba, 1971)

Let H be a RKHS with kernel K, and (x1, . . . , xN) ∈ XN . Then the

solution of:

min
f∈H

N∑
i=1

c(xi, f(xi)) + λ||f ||2H

where c : X × R → R, can always be written in the form:

f(x) =
n∑

i=1

aiK(xi, x).



12

Example

For a Gaussian kernel:

K(x, y) = exp
(
−||x− y||2

2σ2

)
,

the norm in RKHS is:

||f ||2H =
1

2πσ2

∫
|f̂(ω)|2 exp

(
σ2||ω||2

2

)
dω.
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Partie 2

What can you do with a kernel
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Overview

Let K(x, y) be a given kernel. Then is it possible to perform various

algorithms implicitly in the feature space (thanks to the representer

theorem), such as:

• Compute the distance between points

• Principal component analysis (PCA)

• Canonical correlation analysis (CCA)

• Classification by Support vector machines (SVM)
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Compute the distance between objects

g2φ(    )
0

φ(    )g1 d

d(g1, g2)2 = ‖~Φ(g1)− ~Φ(g2)‖2

=
(
~Φ(g1)− ~Φ(g2)

)
.
(
~Φ(g1)− ~Φ(g2)

)
= ~Φ(g1).~Φ(g1) + ~Φ(g2).~Φ(g2)− 2~Φ(g1).~Φ(g2)

d(g1, g2)2= K(g1, g1) + K(g2, g2)− 2K(g1, g2)
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Distance to the center of mass

m

φ(    )g1

Center of mass: ~m = 1
N

∑N
i=1

~Φ(gi), hence:

‖~Φ(g1)− ~m‖2 = ~Φ(g1).~Φ(g1)− 2~Φ(g1).~m + ~m.~m

= K(g1, g1)−
2
N

N∑
i=1

K(g1, gi) +
1

N2

N∑
i,j=1

K(gi, gj)
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Principal component analysis

PC1PC2

It is equivalent to find the eigenvectors of

K =
(
~Φ(gi).~Φ(gj)

)
i,j=1...N

=
(
K(gi, gj)

)
i,j=1...N

Useful to project the objects on small-dimensional spaces (feature

extraction).
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Canonical correlation analysis

CCA2

CCA1

CCA1

CCA2

K1 and K2 are two kernels for the same objects. CCA can be

performed by solving the following generalized eigenvalue problem:(
0 K1K2

K2K1 0

)
~ξ = ρ

(
K2

1 0
0 K2

2

)
~ξ

Useful to find correlations between different representations of the

same objects (ex: genes, ...)
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Classification: support vector machines (SVM)

Find a linear boundary with large margin and few errors
max~α

∑n
i=1 αi − 1

2

∑n
i,j=1 αiαjyiyjK(gi, gj)

∀i = 1, . . . , n 0 ≤ αi ≤ C∑n
i=1 αiyi = 0
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Examples: SVM in bioinformatics

• Gene functional classification from microarry: Brown et al. (2000),

Pavlidis et al. (2001)

• Tissue classification from microarray: Mukherje et al. (1999),

Furey et al. (2000), Guyon et al. (2001)

• Protein family prediction from sequence: Jaakkoola et al. (1998)

• Protein secondary structure prediction: Hua et al. (2001)

• Protein subcellular localization prediction from sequence: Hua et

al. (2001)
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Summary

• Once a kernel K(x, y) is given, several analysis can be performed

implicitly in the feature space

• These methods are considered currently among the most powerful

on many real-world problems

• Modularity: each kernel can work with each method
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Part 3

Local alignment kernel for strings
(with S. Hiroto, N. Ueda, T. Akutsu, preprint 2003)
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Motivations

• Develop a kernel for strings adapted to protein / DNA sequences

• Several methods have been adopted in bioinformatics to measure

the similarity between sequences... but are not valid kernels

• How to mimic them?
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Related work

• Spectrum kernel (Leslie et al.):

K(x1 . . . xm, yi . . . yn) =
m−k∑
i=1

n−k∑
j=1

δ(xi . . . xi+k, yj . . . yj+k).
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Related work

• Spectrum kernel (Leslie et al.):

K(x1 . . . xm, yi . . . yn) =
m−k∑
i=1

n−k∑
j=1

δ(xi . . . xi+k, yj . . . yj+k).

• Fisher kernel (Jaakkola et al.): given a statistical model(
pθ, θ ∈ Θ ⊂ Rd

)
:

φ(x) = ∇θ log pθ(x)
and use the Fisher information matrix.
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Local alignment

• For two strings x and y, a local alignment π with gaps is:

ABCD EF−−−G−HI JKL

MNO TUVWXEEPQRGS−I

• The score is:

s(x, y, π) = s(E,E) + s(F, F ) + s(G, G) + s(I, I)− s(gaps)
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Smith-Waterman (SW) score

SW (x, y) = max
π∈Π(x,y)

s(x, y, π)

• Computed by dynamic programming

• Not a kernel in general
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Convolution kernels (Haussler 99)

• Let K1 and K2 be two kernels for strings

• Their convolution is the following valid kernel:

K1 ? K2(x, y) =
∑

x1x2=x,y1y2=y

K1(x1, y1)K2(x2, y2)
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3 basic kernels

• For the unaligned parts: K0(x, y) = 1.
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3 basic kernels

• For the unaligned parts: K0(x, y) = 1.

• For aligned residues:

K(β)
a (x, y) =

{
0 if |x| 6= 1 or |y| 6= 1,

exp (βs(x, y)) otherwise
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3 basic kernels

• For the unaligned parts: K0(x, y) = 1.

• For aligned residues:

K(β)
a (x, y) =

{
0 if |x| 6= 1 or |y| 6= 1,

exp (βs(x, y)) otherwise

• For gaps:

K(β)
g (x, y) = exp [β (g(|x|) + g(|y|))]
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Combining the kernels

• Detecting local alignments of exactly n residues:

K
(β)
(n)(x, y) = K0 ?

(
K(β)

a ? K(β)
g

)(n−1)

? K(β)
a ? K0.
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Combining the kernels

• Detecting local alignments of exactly n residues:

K
(β)
(n)(x, y) = K0 ?

(
K(β)

a ? K(β)
g

)(n−1)

? K(β)
a ? K0.

• Considering all possible local alignments:

K
(β)
LA =

∞∑
i=0

K
(β)
(i) .
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Properties

K
(β)
LA(x, y) =

∑
π∈Π(x,y)

exp (βs(x, y, π)) ,
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Properties

K
(β)
LA(x, y) =

∑
π∈Π(x,y)

exp (βs(x, y, π)) ,

lim
β→+∞

1
β

lnK
(β)
LA(x, y) = SW (x, y).
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Kernel computation

Y

X0

B

Y0

M

X X2

Y2

E

d

d

d

e

e
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Application: remote homology detection

Cl
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e 
ho
mo
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Tw
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Sequence similarity

Un
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ei
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• Same structure/function but sequence diverged

• Remote homology can not be found by direct sequence similarity
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SCOP database

Fold

Superfamily

Family

SCOP

Close homologsRemote homologs



34

A benchmark experiment

• Can we predict the superfamily of a domain if we have not seen

any member of its family before?
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A benchmark experiment

• Can we predict the superfamily of a domain if we have not seen

any member of its family before?

• During learning: remove a family and learn the difference between

the superfamily and the rest
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A benchmark experiment

• Can we predict the superfamily of a domain if we have not seen

any member of its family before?

• During learning: remove a family and learn the difference between

the superfamily and the rest

• Then, use the model to test each domain of the family removed
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SCOP superfamily recognition benchmark
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Part 4

Analysis of microarray data with
pathways information



37

Genes encode proteins which can catalyse chemical
reations

Nicotinamide Mononucleotide Adenylyltransferase With Bound Nad+
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Chemical reactions are often parts of pathways

From http://www.genome.ad.jp/kegg/pathway
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Microarray technology monitors RNA quantity

(From Spellman et al., 1998)
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Comparing gene expression and protein network

g8

g3 g7

g6
g5g4

g1

g1

g5
g6

g7
g3
g4

g8

g2

Gene network Expression profiles

g2

Are there “correlations”?



41

Pattern of expression

g1

g5
g6

g7
g3
g4

g8

g2

−0.8

+0.8
+0.2

+0.4
−0.7
+0.5
−0.4

+0.1

• In yellow: a candidate pattern , and the correlation coefficient with

each gene profile
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Pattern smoothness

−0.8

+0.8
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+0.1

g8
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g8
−0.8

−0.7
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+0.1
+0.2

+0.4

+0.5

+0.8

• The correlation function with interesting patterns should vary

smoothly on the graph
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Pattern relevance

• Interesting patterns involve many genes

• The projection of profiles onto an interesting pattern should capture

a lot of variations among profiles

• Relevant patterns can be found by PCA
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Problem

Find patterns of expression which are simultaneously

• smooth

• relevant
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Pattern relevance

• Let e(x) the profile of gene x

• Let K1(x, y) = e(x).e(y) be the linear kernel, with RKHS H1.

• The norm ||.||H1 is a relevance functional: the relevance of f ∈ H1

increases when the following decreases:

||f ||H1

||f ||L2
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Pattern smoothness

• Let K2(x, y) be the diffusion kernel obtained from the gene network,

with RKHS H2.

• It can be considered as a discretized version of a Gaussian kernel

(solving the heat equation with the graph Laplacian)

• The norm ||.||H2 is a smoothness functional: the smoother a

function f : X → R, the larger the function:

||f ||H1

||f ||L2
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Problem reformulation

Find a linear function f1 and a function f2 such that:

• f1 be relevant : ||f1||L2/||f1||H1 be large

• f2 be smooth : ||f2||L2/||f2||H2 be large

• f1 and f2 be correlated :

f1.f2

||f1||L2||f2||L2

be large
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Problem reformulation (2)

The three goals can be combined in the following problem:

max
f1,f2

f1.f2(
||f1||2L2 + δ||f1||2H1

)1
2
(
||f2||2L2 + δ||f2||2H2

)1
2

where the parameter δ controls the trade-off between

relevance/smoothness on the one hand, correlation on the other

hand.
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Solving the problem

This formultation is equivalent to a generalized form of CCA

(Kernel-CCA, Bach and Jordan, 2002), which is equivalent to the

following generalized eigenvector problem(
0 K1K2

K2K1 0

) (
α

β

)
= ρ

(
K2

1 + δK1 0
0 K2

2 + δK2

) (
α

β

)
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Summary
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Data

• Gene network: two genes are linked if the catalyze successive

reactions in the KEGG database

• Expression profiles: 18 time series measures for the 6,000 genes of

yeast, during two cell cycles
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First pattern of expression
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Related metabolic pathways

50 genes with highest s2 − s1 belong to:

• Oxidative phosphorylation (10 genes)

• Citrate cycle (7)

• Purine metabolism (6)

• Glycerolipid metabolism (6)

• Sulfur metabolism (5)

• Selenoaminoacid metabolism (4) , etc...
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Related genes
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Related genes
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Related genes
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Opposite pattern
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Related genes

• RNA polymerase (11 genes)

• Pyrimidine metabolism (10)

• Aminoacyl-tRNA biosynthesis (7)

• Urea cycle and metabolism of amino groups (3)

• Oxidative phosphorlation (3)

• ATP synthesis(3) , etc...
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Related genes



60

Related genes
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Related genes
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Extensions

• Can be used to extract features from expression profiles (preprint

2002)

• Can be generalized to more than 2 datasets and other kernels

• Can be used to extract clusters of genes (e.g., operon detection,

ISMB 03 with Y. Yamanishi, A. Nakaya and M. Kanehisa)
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Conclusion
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Conclusion

• SVM and kernel methods work well on real-life problems, in

particular in high dimension and with noise

• Kernels can be engineered for non-vectorial data

• Kernels povides a general framework to integrate heterogeneous

data


