Support vector machines in bioinformatics: 3 examples

Jean-Philippe.Vert@mines.org

Ecole des Mines de Paris Computational Biology group

Machine Learning in Bioinformatics workshop, October 16th, 2003, Brussels, Belgium.

Ecole des Mines de Paris

- 1770 persons (250 academics, 400 PhD students, 670 undergraduates/M.S.)
- 19 research centers (earth science, energy, mechanics, applied maths, economics)
- 21.5 Million euros of research contracts

Computational biology at the Ecole des Mines

- Expertise in statistics, machine learning, data mining...
- Projects: functional genomics, learning from heterogeneous data, virtual screening of chemical compounds, microarray data and pathway analysis...

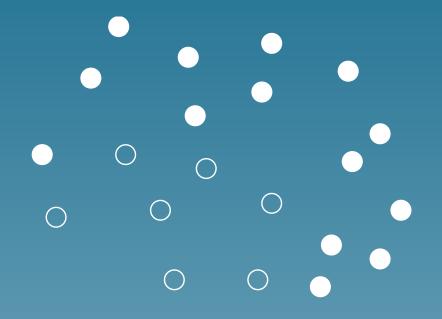
Overview

- 1. Pattern recognition and Support Vector Machines
- 2. Signal peptide detection
- 3. Virtual screening of small molecules
- 4. Analysis of microarray data with pathways information

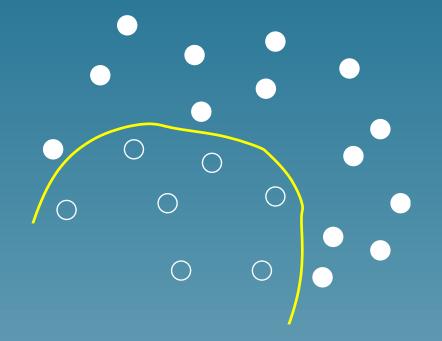
Partie 1

Pattern recognition and Support Vector Machines

The pattern recognition problem

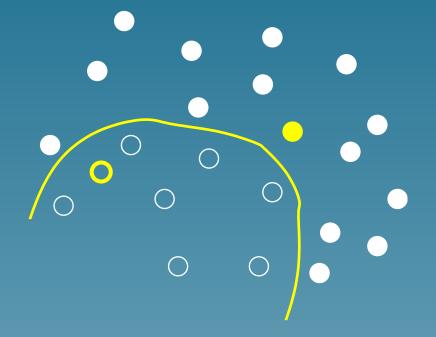


The pattern recognition problem



• Learn from labelled examples a discrimination rule

The pattern recognition problem

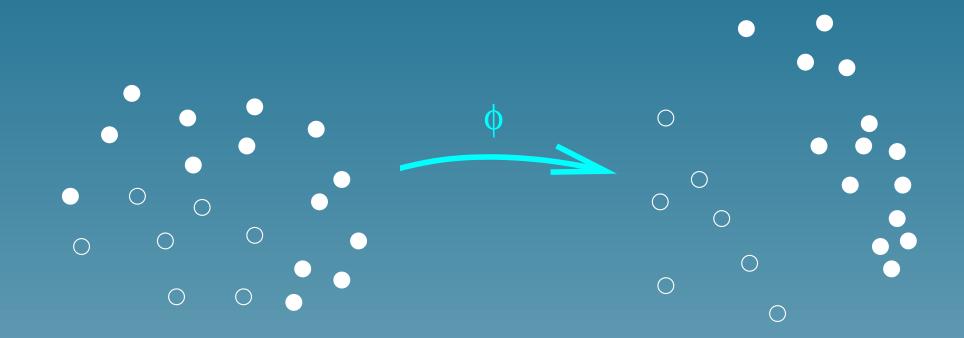


- Learn from labelled examples a discrimination rule
- Use it to predict the class of new points

Pattern recognition examples

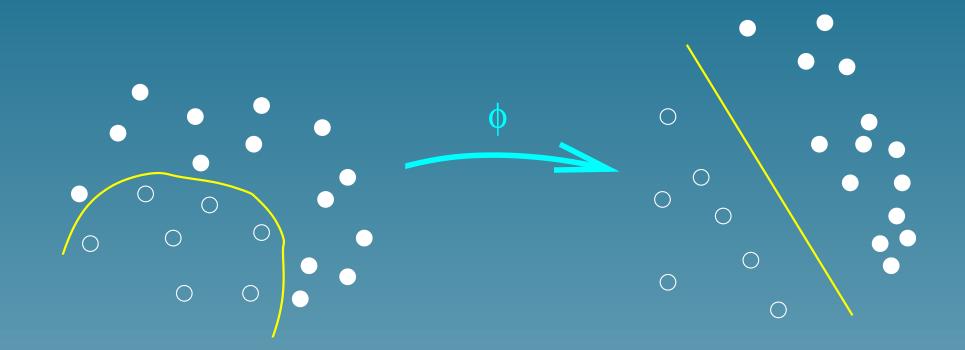
- Medical diagnosis (e.g., from microarrays)
- Drugability/activity of chemical compouds
- Gene function, structure, localization
- Protein interactions

Support Vector Machines for pattern recognition



• Object x represented by the vector $\vec{\Phi(x)}$ (feature space)

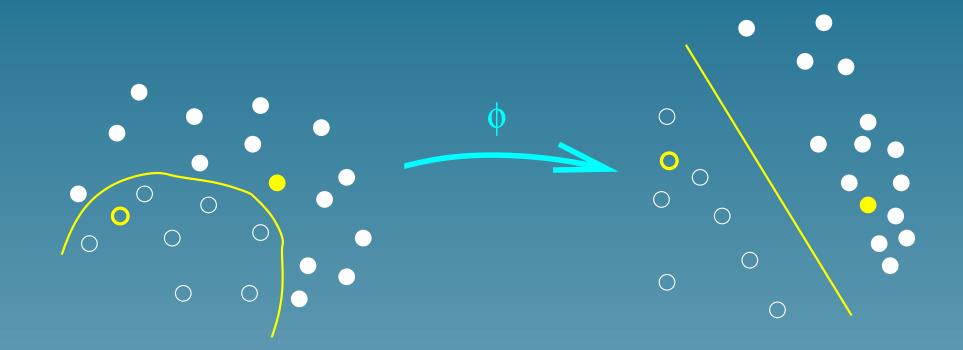
Support Vector Machines for pattern recognition



• Object x represented by the vector $\vec{\Phi(x)}$ (feature space)

• Linear separation with large margin in the feature space

Support Vector Machines for pattern recognition



• Object x represented by the vector $\vec{\Phi(x)}$ (feature space)

• Linear separation with large margin in the feature space

The kernel trick for SVM

• The separation can be found without knowing $\Phi(x)$. Only the following kernel matters:

$$K(x,y) = \Phi(x).\Phi(y)$$

• Simple kernels K(x,y) can correspond to complex $ec{\Phi}$

SVM work with any sort of data as soon as a kernel is defined

Kernels

- A kernel can be thought of as a measure of similarity.
- There are mathematical conditions to ensure that a function K(x,y) is a valid kernel (it must be symmetric positive semidefinite).
- As soon as K(.,.) is a valid kernel, SVM can be used for pattern recognition

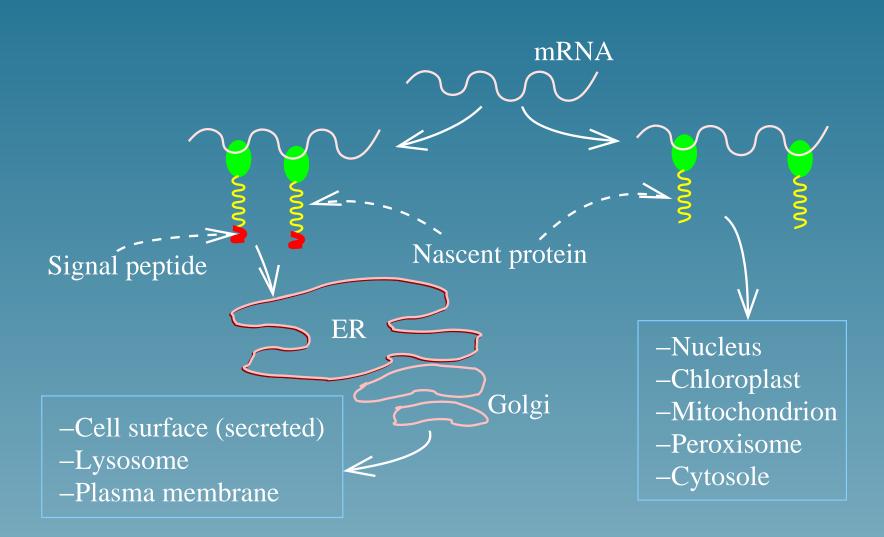
Advantages of SVM

- Works well on real-world applications
- Large dimensions, noise OK
- Can be applied to any kind of data as soon as a kernel is available

Partie 2

Signal peptide cleavage site detection

Secretory pathway



Signal peptides

(1):Leucine-binding protein, (2):Pre-alkaline phosphatase,(3)Pre-lipoprotein

Signal peptides

(1):Leucine-binding protein, (2):Pre-alkaline phosphatase,(3)Pre-lipoprotein

- 6-12 hydrophobic residues (in yellow)
- (-3,-1) : small uncharged residues

The classification problem(s)

• Problem 1 :

Given an aminoacids windows:

$$[x_{-8}, x_{-7}, \dots, x_{-1}, x_1, x_2] = \mathsf{ILGSTLLACS}$$

is there a cleavage site between x_{-1} and x_1 ?

The classification problem(s)

• Problem 1 :

Given an aminoacids windows:

$$[x_{-8}, x_{-7}, \dots, x_{-1}, x_1, x_2] = \mathsf{ILGSTLLACS}$$

is there a cleavage site between x_{-1} and x_1 ?

• Problem 2 :

Given an protein sequence, does it contain a signal peptide?

Current methods : Problem 1

• Weight matrix method: compute the score of a window by:

 $s(ILGSTLLACS) = s_{-8}(I) + s_{-7}(L) + \ldots + s_{2}(S)$

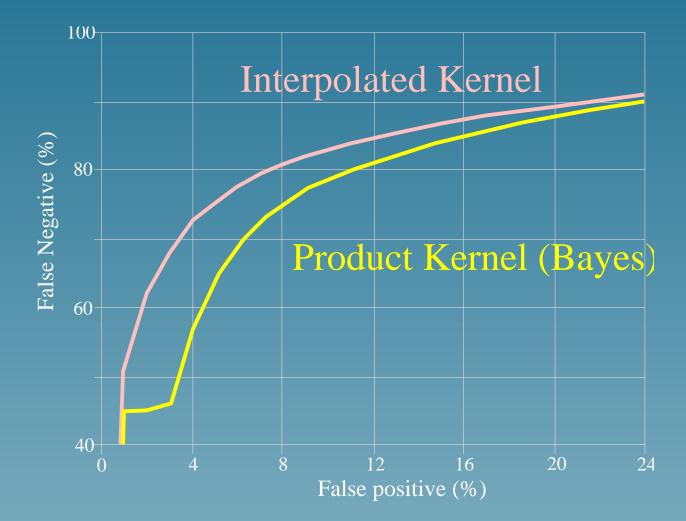
where s_i have been trained from example to discriminate between windows with or without cleavage site (Von Heijne)

Neural networks (Brunak et al.)

SVM approach (PSB 2002)

- We need a kernel $K(w_1, w_2)$ between 2 windows
- It is possible to transform a weight matrix into a kernel (technical, see paper)
- Experiment : 1,418 positive examples, 65,216 negative examples, cross-validation

Result: ROC curves



Remarks

- The weight matrix is used to define the geometry of the feature space (through the kernel)
- The SVM algorithm learns a linear discrimination in this space

Problem 2: signal peptide detection

- Classical approach: move a window along the sequence, check whether it looks like a typical signal peptide
- SVM approach: we need a string kernel $K(p_1, p_2)$ for variablelength protein sequences
- String kernel examples: Fisher kernel (Jaakkola et al. 99), spectrum and mismatch kernels (Leslie et al. 02), local alignment kernel (Vert et al. 03)...

Local alignment kernel

• For two strings x and y, a local alignment π with gaps is:

ABCD EF---G-HI JKL IIIII MNO EFPORGS-I TUVWX

• The score is:

 $s(x, y, \pi) = s(E, E) + s(F, F) + s(G, G) + s(I, I) - s(gaps)$

Smith-Waterman (SW) score

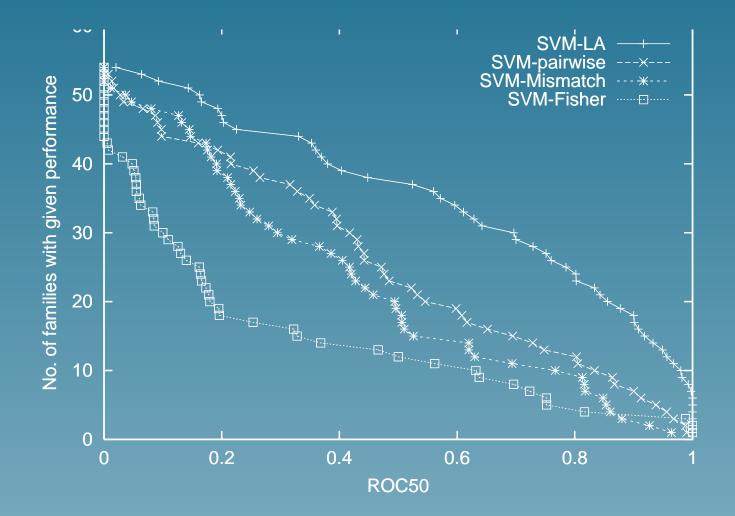
$$SW(x,y) = \max_{\pi \in \Pi(x,y)} s(x,y,\pi)$$

• This is not a kernel in general

• But the following is a valid kernel:

$$K_{LA}^{(\beta)}(x,y) = \sum_{\pi \in \Pi(x,y)} \exp\left(\beta s(x,y,\pi)\right),$$

SCOP superfamily recognition benchmark

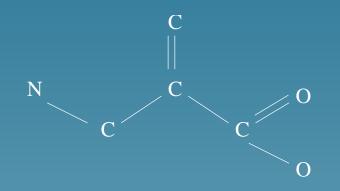


Partie 3

Virtual screening of small molecules

The problem

• Objects = chemical compounds (formula, structure..)



- Problem = predict their:
 - * drugability
 - * pharmacocinetics
 - ★ activity on a target etc...

Classical approaches

- Use molecular descriptors to represent the compouds as vectors
- Select a limited numbers of relevant descriptors
- Use linear regression, NN, nearest neighbour etc...

SVM approach

• We need a kernel $K(c_1, c_2)$ between compounds

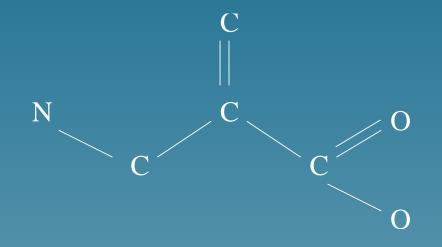
SVM approach

- We need a kernel $K(c_1, c_2)$ between compounds
- One solution: inner product between vectors

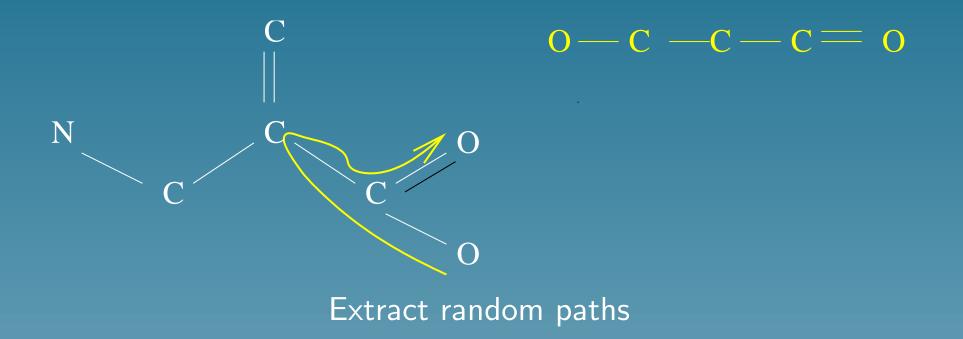
SVM approach

- We need a kernel $K(c_1, c_2)$ between compounds
- One solution: inner product between vectors
- Alternative solution: define a kernel directly using graph comparison tools

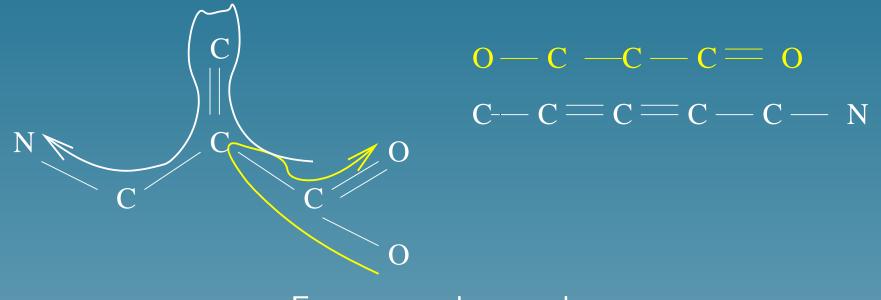
Example: graph kernel (Kashima et al., 2003)



Example: graph kernel (Kashima et al., 2003)



Example: graph kernel (Kashima et al., 2003)



Extract random paths

Example: graph kernel (Kashima et al., 2003)

- Let H_1 be a random path of a compound c_1
- Let H_2 be a random path of a compound c_2
- The following is a valid kernel:

 $K(c_1, c_2) = \operatorname{Prob}(H_1 = H_2).$

Remarks

 Interesting preliminary results in mutagenesis prediction (benchmark dataset)

Remarks

- Interesting preliminary results in mutagenesis prediction (benchmark dataset)
- Two compounds are compared in terms of their common substructures

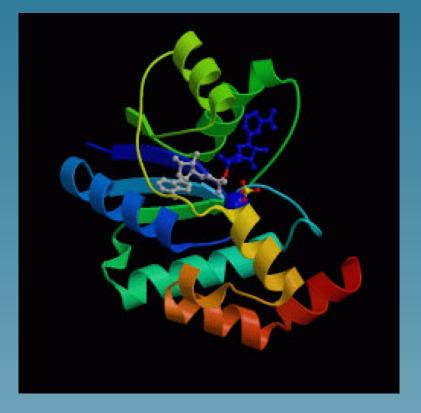
Remarks

- Interesting preliminary results in mutagenesis prediction (benchmark dataset)
- Two compounds are compared in terms of their common substructures
- What about kernels for the 3D structure?

Partie 4

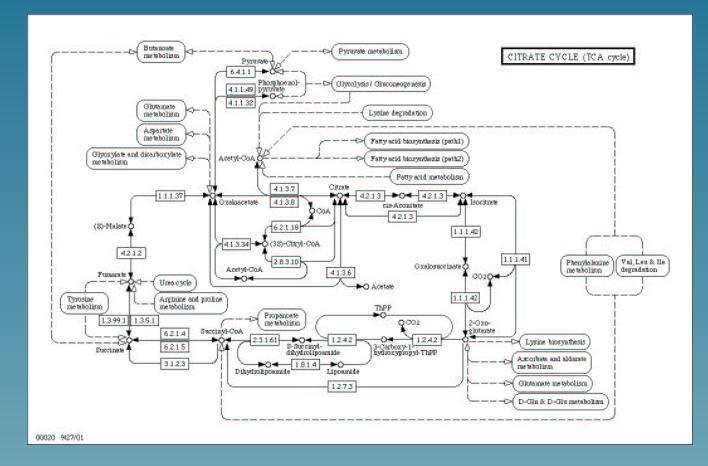
Analysis of microarray data with pathways information

Genes encode proteins which can catalyse chemical reations



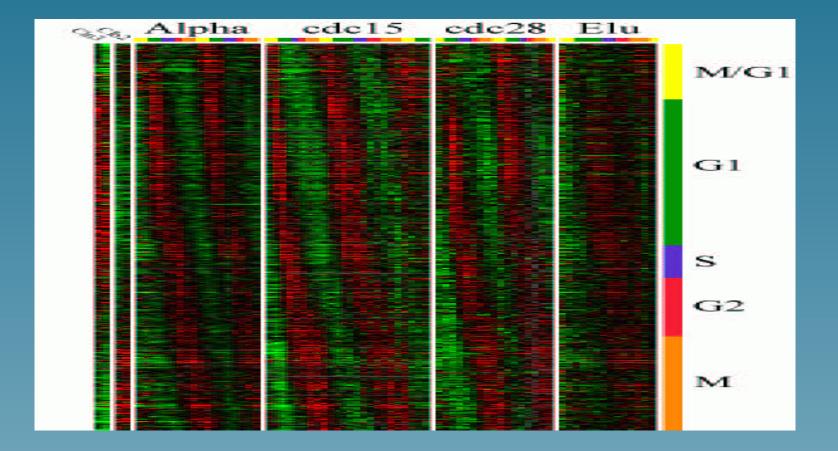
Nicotinamide Mononucleotide Adenylyltransferase With Bound Nad+

Chemical reactions are often parts of pathways



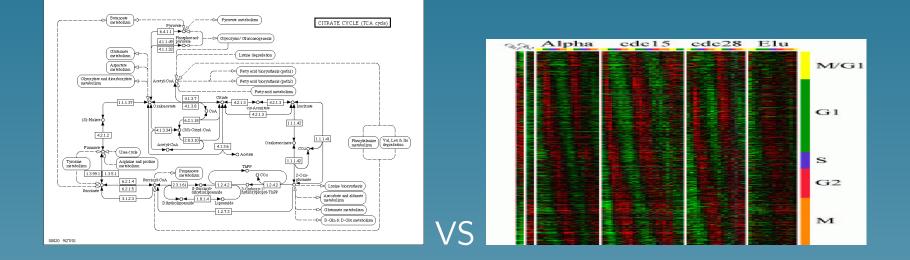
From http://www.genome.ad.jp/kegg/pathway

Microarray technology monitors RNA quantity



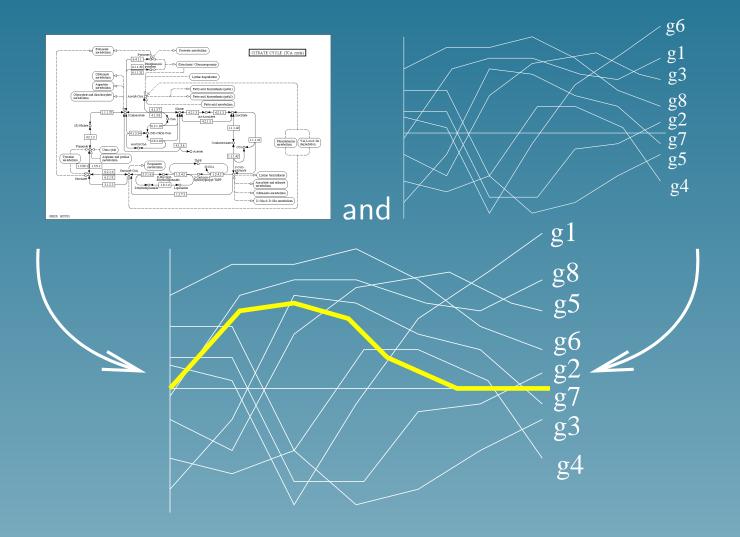
(From Spellman et al., 1998)

Comparing gene expression and pathway databases

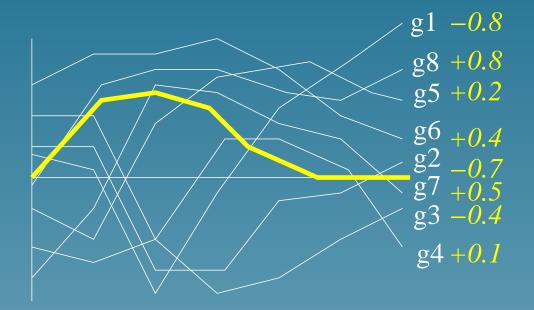


Detect active pathways? Denoise expression data? Denoise pathway database? Find new pathways? Are there "correlations"?

A useful first step

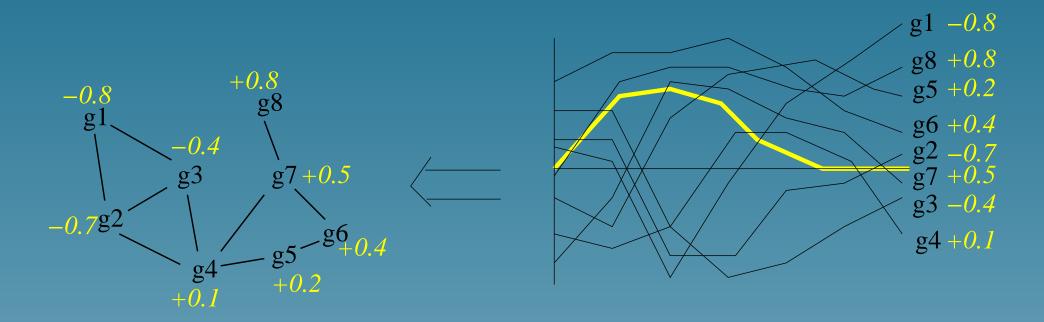


Pattern of expression



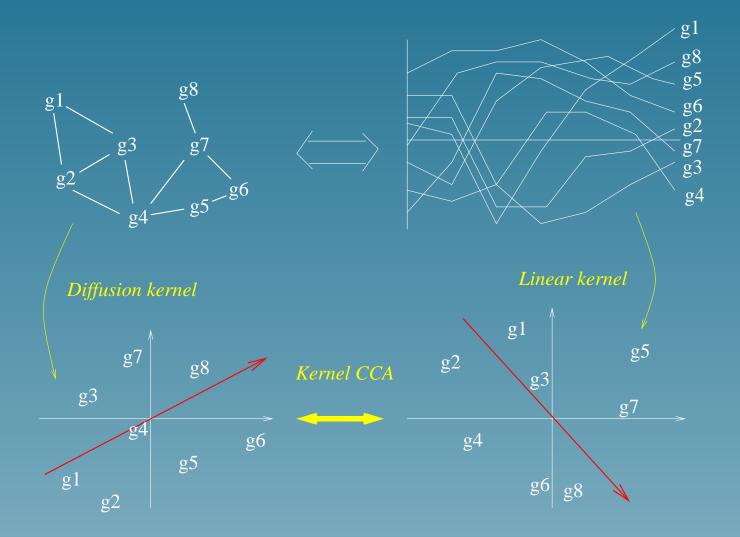
• In yellow: a candidate pattern , and the correlation coefficient with each gene profile

Pattern smoothness



 The correlation function with interesting patterns should vary smoothly on the graph

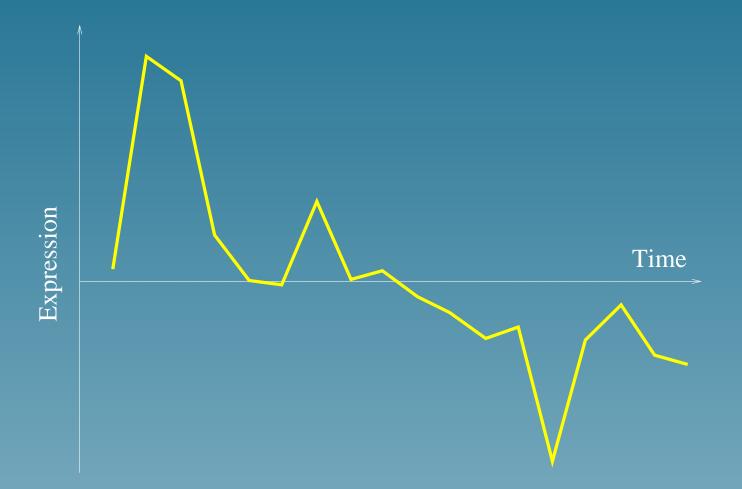
Summary



Data

- Gene network: two genes are linked if the catalyze successive reactions in the KEGG database
- Expression profiles: 18 time series measures for the 6,000 genes of yeast, during two cell cycles

First pattern of expression

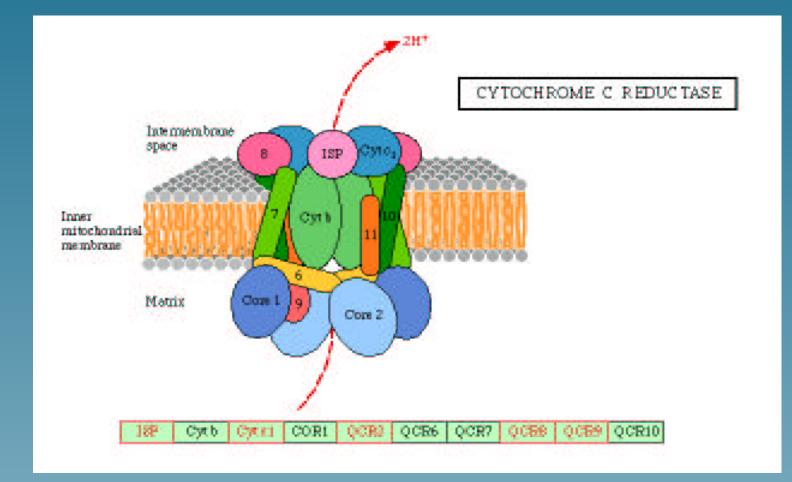


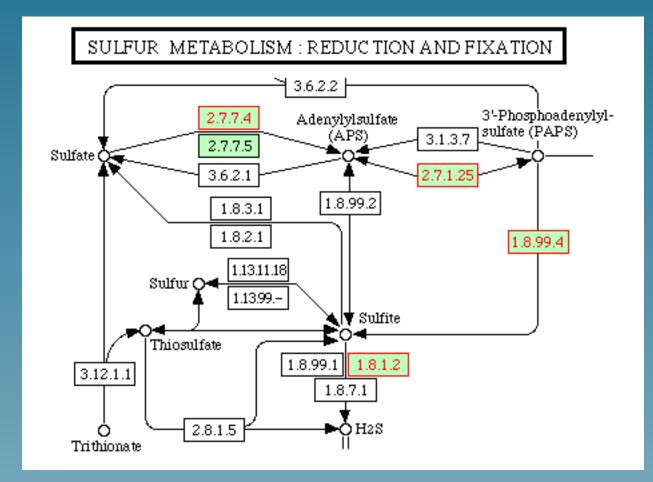
Related metabolic pathways

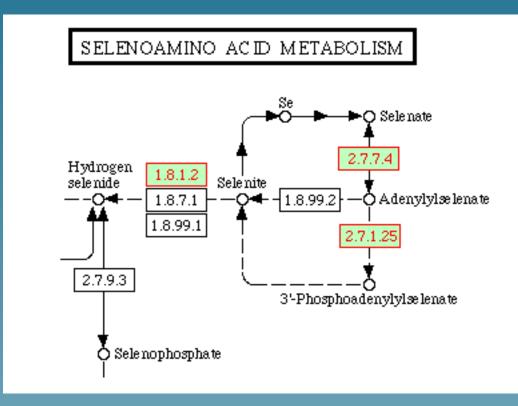
50 genes with highest $s_2 - s_1$ belong to:

- Oxidative phosphorylation (10 genes)
- Citrate cycle (7)
- Purine metabolism (6)
- Glycerolipid metabolism (6)
- Sulfur metabolism (5)

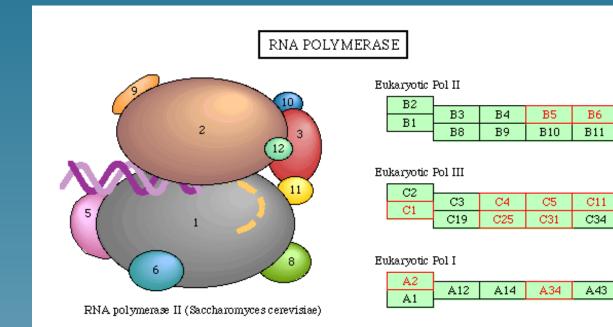
• Selenoaminoacid metabolism (4), etc...







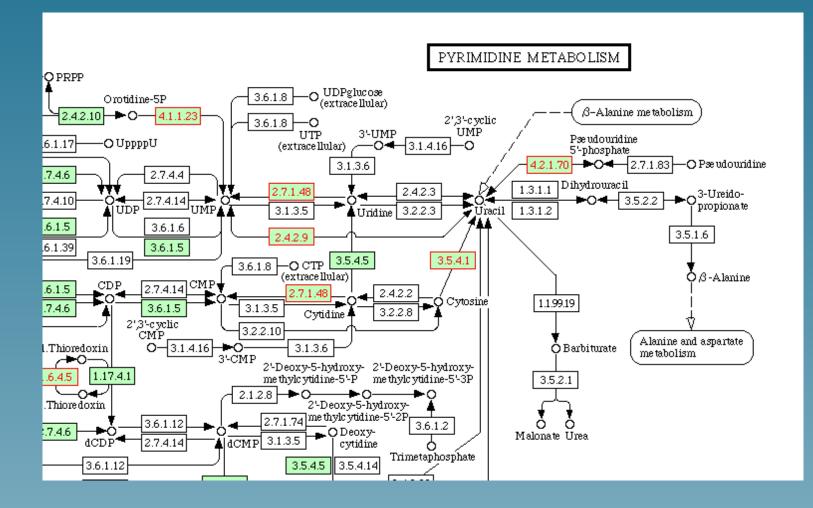
- RNA polymerase (11 genes)
- Pyrimidine metabolism (10)
- Aminoacyl-tRNA biosynthesis (7)
- Urea cycle and metabolism of amino groups (3)
- Oxidative phosphorlation (3)
- ATP synthesis(3) , etc...

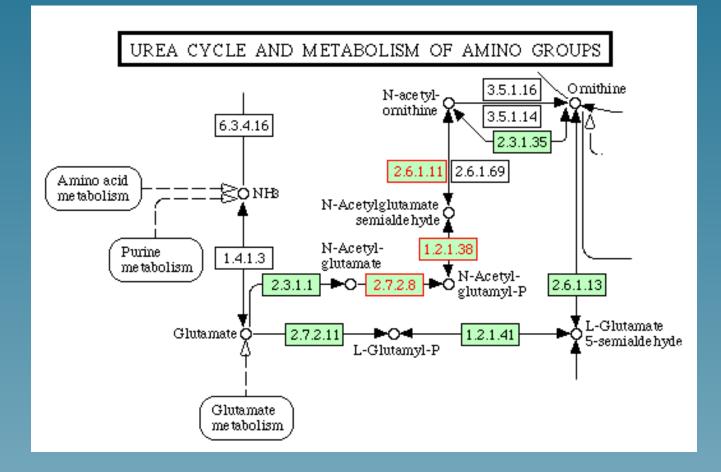


B7

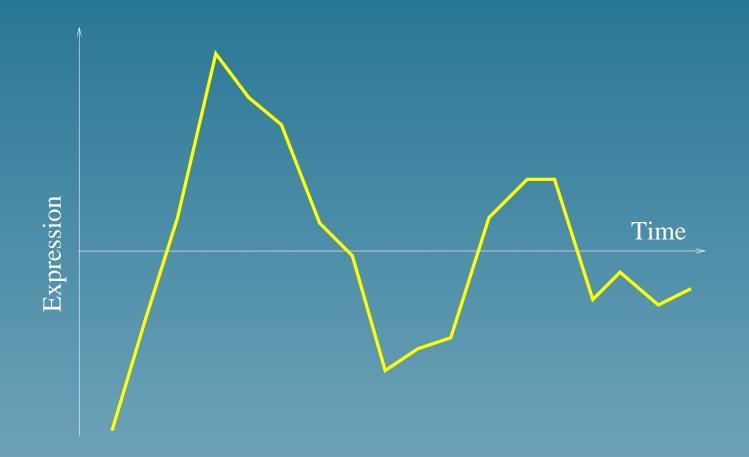
B12

A49





Second pattern



Extensions

- Can be used to extract features from expression profiles (preprint 2002)
- Can be generalized to more than 2 datasets and other kernels
- Can be used to extract clusters of genes (e.g., operon detection, ISMB 03 with Y. Yamanishi, A. Nakaya and M. Kanehisa)

Conclusion

Conclusion

- Kernels offer a versatile framework to represent biological data
- SVM and kernel methods work well on real-life problems, in particular in high dimension and with noise
- Encouraging results on real-world applications
- Many opportunities in developping kernels for particular applications