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Ecole des Mines de Paris

• 1770 persons (250 academics, 400 PhD students, 670

undergraduates/M.S.)

• 19 research centers (earth science, energy, mechanics, applied

maths, economics)

• 21.5 Million euros of research contracts
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Computational biology at the Ecole des Mines

• Expertise in statistics, machine learning, data mining...

• Projects: functional genomics, learning from heterogeneous data,

virtual screening of chemical compounds, microarray data and

pathway analysis...
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Overview

1. Pattern recognition and Support Vector Machines

2. Signal peptide detection

3. Virtual screening of small molecules

4. Analysis of microarray data with pathways information
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Partie 1

Pattern recognition
and

Support Vector Machines
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The pattern recognition problem
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The pattern recognition problem

• Learn from labelled examples a discrimination rule
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The pattern recognition problem

• Learn from labelled examples a discrimination rule

• Use it to predict the class of new points
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Pattern recognition examples

• Medical diagnosis (e.g., from microarrays)

• Drugability/activity of chemical compouds

• Gene function, structure, localization

• Protein interactions
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Support Vector Machines for pattern recognition

φ

• Object x represented by the vector ~Φ(x) (feature space)
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Support Vector Machines for pattern recognition

φ

• Object x represented by the vector ~Φ(x) (feature space)

• Linear separation with large margin in the feature space
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The kernel trick for SVM

• The separation can be found without knowing Φ(x). Only the

following kernel matters:

K(x, y) = ~Φ(x). ~Φ(y)

• Simple kernels K(x, y) can correspond to complex ~Φ

• SVM work with any sort of data as soon as a kernel is defined
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Kernels

• A kernel can be thought of as a measure of similarity.

• There are mathematical conditions to ensure that a function

K(x, y) is a valid kernel (it must be symmetric positive

semidefinite).

• As soon as K(., .) is a valid kernel, SVM can be used for pattern

recognition
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Advantages of SVM

• Works well on real-world applications

• Large dimensions, noise OK

• Can be applied to any kind of data as soon as a kernel is available
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Partie 2

Signal peptide cleavage site
detection
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Secretory pathway

Nascent protein

ER

Golgi

Signal peptide

mRNA

−Cell surface (secreted)
−Lysosome
−Plasma membrane

−Nucleus
−Chloroplast
−Mitochondrion
−Peroxisome
−Cytosole
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Signal peptides

Protein -1 +1

(1) MKANAKTIIAGMIALAISHTAMA EE...
(2) MKQSTIALALLPLLFTPVTKA RT...
(3) MKATKLVLGAVILGSTLLAG CS...

(1):Leucine-binding protein, (2):Pre-alkaline phosphatase,

(3)Pre-lipoprotein
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Signal peptides

Protein -1 +1

(1) MKANAKTIIAGMIALAISHTAMA EE...
(2) MKQSTIALALLPLLFTPVTKA RT...
(3) MKATKLVLGAVILGSTLLAG CS...

(1):Leucine-binding protein, (2):Pre-alkaline phosphatase,

(3)Pre-lipoprotein

• 6-12 hydrophobic residues (in yellow)

• (-3,-1) : small uncharged residues
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The classification problem(s)

• Problem 1 :

Given an aminoacids windows:

[x−8, x−7, . . . , x−1, x1, x2] = ILGSTLLACS

is there a cleavage site between x−1 and x1 ?
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The classification problem(s)

• Problem 1 :

Given an aminoacids windows:

[x−8, x−7, . . . , x−1, x1, x2] = ILGSTLLACS

is there a cleavage site between x−1 and x1 ?

• Problem 2 :

Given an protein sequence, does it contain a signal peptide?
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Current methods : Problem 1

• Weight matrix method: compute the score of a window by:

s(ILGSTLLACS) = s−8(I) + s−7(L) + . . .+ s2(S)

where si have been trained from example to discriminate between

windows with or without cleavage site (Von Heijne)

• Neural networks (Brunak et al.)
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SVM approach (PSB 2002)

• We need a kernel K(w1, w2) between 2 windows

• It is possible to transform a weight matrix into a kernel (technical,

see paper)

• Experiment : 1,418 positive examples, 65,216 negative examples,

cross-validation
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Result: ROC curves
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Remarks

• The weight matrix is used to define the geometry of the feature

space (through the kernel)

• The SVM algorithm learns a linear discrimination in this space
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Problem 2: signal peptide detection

• Classical approach: move a window along the sequence, check

whether it looks like a typical signal peptide

• SVM approach: we need a string kernel K(p1, p2) for variable-

length protein sequences

• String kernel examples: Fisher kernel (Jaakkola et al. 99), spectrum

and mismatch kernels (Leslie et al. 02), local alignment kernel (Vert

et al. 03)...
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Local alignment kernel

• For two strings x and y, a local alignment π with gaps is:

ABCD EF−−−G−HI JKL

MNO EFPQRGS−I TUVWX

• The score is:

s(x, y, π) = s(E,E) + s(F, F ) + s(G,G) + s(I, I)− s(gaps)
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Smith-Waterman (SW) score

SW (x, y) = max
π∈Π(x,y)

s(x, y, π)

• This is not a kernel in general

• But the following is a valid kernel:

K
(β)
LA(x, y) =

∑
π∈Π(x,y)

exp (βs(x, y, π)) ,
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SCOP superfamily recognition benchmark
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Partie 3

Virtual screening of small
molecules
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The problem

• Objects = chemical compounds (formula, structure..)

C C

C O

C

N

O

• Problem = predict their:

? drugability

? pharmacocinetics

? activity on a target etc...
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Classical approaches

• Use molecular descriptors to represent the compouds as vectors

• Select a limited numbers of relevant descriptors

• Use linear regression, NN, nearest neighbour etc...
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SVM approach

• We need a kernel K(c1, c2) between compounds
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SVM approach

• We need a kernel K(c1, c2) between compounds

• One solution: inner product between vectors
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SVM approach

• We need a kernel K(c1, c2) between compounds

• One solution: inner product between vectors

• Alternative solution: define a kernel directly using graph comparison

tools
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Example: graph kernel (Kashima et al., 2003)
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Example: graph kernel (Kashima et al., 2003)
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Example: graph kernel (Kashima et al., 2003)
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Example: graph kernel (Kashima et al., 2003)

• Let H1 be a random path of a compound c1

• Let H2 be a random path of a compound c2

• The following is a valid kernel:

K(c1, c2) = Prob(H1 = H2).
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Remarks

• Interesting preliminary results in mutagenesis prediction

(benchmark dataset)



36

Remarks
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• Two compounds are compared in terms of their common

substructures
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Remarks

• Interesting preliminary results in mutagenesis prediction

(benchmark dataset)

• Two compounds are compared in terms of their common

substructures

• What about kernels for the 3D structure?
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Partie 4

Analysis of microarray data with
pathways information
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Genes encode proteins which can catalyse chemical
reations

Nicotinamide Mononucleotide Adenylyltransferase With Bound Nad+
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Chemical reactions are often parts of pathways

From http://www.genome.ad.jp/kegg/pathway
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Microarray technology monitors RNA quantity

(From Spellman et al., 1998)
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Comparing gene expression and pathway databases

VS

Detect active pathways? Denoise expression data?

Denoise pathway database? Find new pathways?

Are there “correlations”?
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A useful first step
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Pattern of expression

g1

g5
g6

g7
g3
g4

g8

g2

−0.8

+0.8
+0.2

+0.4
−0.7
+0.5
−0.4

+0.1

• In yellow: a candidate pattern , and the correlation coefficient with

each gene profile
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Pattern smoothness
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• The correlation function with interesting patterns should vary

smoothly on the graph
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Summary
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Data

• Gene network: two genes are linked if the catalyze successive

reactions in the KEGG database

• Expression profiles: 18 time series measures for the 6,000 genes of

yeast, during two cell cycles
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First pattern of expression
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Related metabolic pathways

50 genes with highest s2 − s1 belong to:

• Oxidative phosphorylation (10 genes)

• Citrate cycle (7)

• Purine metabolism (6)

• Glycerolipid metabolism (6)

• Sulfur metabolism (5)

• Selenoaminoacid metabolism (4) , etc...
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Related genes



50

Related genes
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Related genes
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Opposite pattern
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Related genes

• RNA polymerase (11 genes)

• Pyrimidine metabolism (10)

• Aminoacyl-tRNA biosynthesis (7)

• Urea cycle and metabolism of amino groups (3)

• Oxidative phosphorlation (3)

• ATP synthesis(3) , etc...
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Related genes
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Related genes
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Related genes
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Second pattern
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Extensions

• Can be used to extract features from expression profiles (preprint

2002)

• Can be generalized to more than 2 datasets and other kernels

• Can be used to extract clusters of genes (e.g., operon detection,

ISMB 03 with Y. Yamanishi, A. Nakaya and M. Kanehisa)



59

Conclusion
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Conclusion

• Kernels offer a versatile framework to represent biological data

• SVM and kernel methods work well on real-life problems, in

particular in high dimension and with noise

• Encouraging results on real-world applications

• Many opportunities in developping kernels for particular applications


