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Overview

1. Support Vector Machines and kernel methods

2. Application: Protein remote homology detection
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and




The pattern recognition problem




The pattern recognition problem




The pattern recognition problem




Pattern recognition examples

Medical diagnosis (e.g., from microarrays)

Drugability /activity of chemical compouds




10

Support Vector Machines for pattern recognition
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Support Vector Machines for pattern recognition
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Large margin separation
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Dual formulation

The classification of a new point z is the sign of:

flz) = Z o; K(xz,x;) + b,

where «; solves:
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The kernel trick for SVM

The separation can be found without knowing ®(x). Only the
kernel matters:

K(z,y) = ®(z).0(y)
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Kernel examples

Linear :

Polynomial :
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LCIES

For any set X', a function K : X x X — R is a kernel iff:

It Is symetric :

K(z,y) = K(y, z),
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Advantages of SVM

Works well on real-world applications

Large dimensions, noise OK (7)
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Examples: SVM in bioinformatics

Gene functional classification from microarry: Brown et al. (2000),
Pavlidis et al. (2001)

Tissue classification from microarray: Mukherje et al. (1999),
Furey et al. (2000), Guyon et al. (2001)
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Kernel methods

Let K (x,y) be a given kernel. Then is it possible to perform other
linear algorithms implicitly in the feature space such as:

Compute the distance between points
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Compute the distance between objects
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Distance to the center of mass

=

g,
e
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Principal component analysis
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Canonical correlation analysis

K, and K5 are two kernels for the same objects. CCA can be
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Part 2

Local alignment kernel for strings

(with S. Hiroto, N. Ueda, T. Akutsu, preprint 2003)
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Motivations

Develop a kernel for strings adapted to protein / DNA sequences

Several methods have been adopted in bioinformatics to measure
the similarity between sequences... but are not valid kernels
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Related work

Spectrum kernel (Leslie et al.):

m—kn—=k
K(x1...Tm,y1---Yn) = ;j Sj5(xi...xi+k,yj...yj+k).
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Related work

Spectrum kernel (Leslie et al.):
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Local alignment

For two strings x and y, a local alignment 7 with gaps is:

AbCD II:II————(IJ'—HII JKL
MNO EEPORGS—1 TUVWX
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Smith-Waterman (SW) score

SW(x,y) = s s(x,y, )
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Convolution kernels (Haussler 99)

Let K1 and K5 be two kernels for strings

Their convolution is the following valid kernel:
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3 basic kernels

For the unaligned parts: Ky(z,y) = 1.
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3 basic kernels

For the unaligned parts: Ky(z,y) = 1.

For aligned residues:

0 f 2] # 1or |y| # 1,
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3 basic kernels

For the unaligned parts: Ky(z,y) = 1.

For aligned residues:

0 f 2] # 1or |y| # 1,
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Combining the kernels

Detecting local alignments of exactly n residues:

(n—1)
K(ﬁ)(x,y):Ko*(Kéﬁ)*KéB)) * K x K.

(1)
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Combining the kernels

Detecting local alignments of exactly n residues:
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Properties

Kfl(@y)= Y exp(Bs(a,y,m)),

mell(z,y)
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Properties

Kfl(@y)= Y exp(Bs(a,y,m)),

mell(z,y)
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Kernel computation
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Application: remote homology detection
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SCOP database

SCOP
Fold

Super family C{
Family OO
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A benchmark experiment

Can we predict the superfamily of a domain if we have not seen
any member of its family before?
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SCOP superfamily recognition benchmark

SVM-LA —+—
SVM-pairwise ---x---
SVM-Mismatch ------
SVM-Fisher - 7

given performance
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Partie 3

Virtual screening of small
molecules
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The problem

Objects = chemical compounds (formula, structure..)
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Classical approaches

Use molecular descriptors to represent the compouds as vectors

Select a limited numbers of relevant descriptors
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SVM approach

We need a kernel K (c1,cz) between compounds
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SVM approach

We need a kernel K (c1,cz) between compounds

One solution: inner product between vectors
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SVM approach

We need a kernel K (c1,cz) between compounds

One solution: inner product between vectors
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Example: graph kernel (Kashima et al., 2003)

N C
\C/ \C/O
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Example: graph kernel (Kashima et al., 2003)
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Example: graph kernel (Kashima et al., 2003)
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Example: graph kernel (Kashima et al., 2003)

Let H; be a random path of a compound ¢;

Let Hy be a random path of a compound cs
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Remarks

Interesting  preliminary results in  mutagenesis prediction
(benchmark dataset)
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Part 4

Detecting pathway activity from
microarray data







Chemical reactions are often parts of pathways

\ memwbolizm )

O xalosuce nate O

From http://www.genome.ad.jp/kegg/pathway
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Microarray technology monitors mRNA quantity
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Comparing gene expression and pathway databases

Detect active pathways? Denoise expression data?
Denoise pathway database? Find new pathways?
Are there “correlations”?
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A useful first step
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Using microarray only
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PCA formulation

Let f,(i7) be the projection of the i-th profile onto v.

The amount of variation captured by f, is:
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Issues with PCA

PCA is useful if there is a small number of strong signal

In concrete applications, we observe a noisy superposition of many
events




The metabolic gene network

GAL10
Glucose w:im
Glucose-6P
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Mapping f, to the metabolic gene network
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Important hypothesis

If v is related to a metabolic activity, then f, should vary
"smoothly” on the graph
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Graph Laplacian L =D — A

1
3 /5

A
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Smoothness quantification

_ flexp(—=pBL)f
hZ(f) — f‘rf

Is large when f is smooth

O
h(f) = 2.5 h(f) = 34.2
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Motivation

For a candidate profile v,

hi(fy,) is large when v captures a lot of natural variation among
profiles
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Problem reformulation

Find a function f, and a function f5 such that:

hi(f,) be large

ho(f2) be large
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Solving the problem

This formultation is equivalent to a generalized form of CCA
(Kernel-CCA, Bach and Jordan, 2002), which is solved by the
following generalized eigenvector problem

0 K1K2 « K12—|—5K1 0 87
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The kernel point of view...
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Data

Gene network: two genes are linked if the catalyze successive
reactions in the KEGG database (669 yeast genes)

Expression profiles: 18 time series measures for the 6,000 genes of
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First pattern of expression
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Related metabolic pathways

50 genes with highest so — s belong to:

Oxidative phosphorylation (10 genes)

Citrate cycle (7)
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Related genes
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Opposite pattern
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Related genes

RNA polymerase (11 genes)

Pyrimidine metabolism (10)




Related genes
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Second pattern
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Extensions

Can be used to extract features from expression profiles (preprint
2002)

Can be generalized to more than 2 datasets and other kernels
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Conclusion
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Conclusion

Kernels offer a versatile framework to represent biological data

SVM and kernel methods work well on real-life problems, in
particular in high dimension and with noise




