Statistical learning theory, Support vector machines, and Bioinformatics

Jean-Philippe.Vert@mines.org

Ecole des Mines de Paris Computational Biology group

ENS Paris, november 25, 2003.

Overview

1. Statistical learning theory
2. Support vector machines
3. Computational biology
4. Short example: virtual screening for drug design

Partie 1

Statistical learning theory

The pattern recognition problem

The pattern recognition problem

- Learn from labelled examples a discrimination rule

The pattern recognition problem

- Learn from labelled examples a discrimination rule
- Use it to predict the class of new points

Pattern recognition applications

- Multimedia (OCR, speech recognition, spam filter,..)
- Finance, Marketing
- Bioinformatics, medical diagnosis, drug design,...

Formalism

Object: $x \in \mathcal{X}$

Formalism

Object: $x \in \mathcal{X}$

- Label: $y \in \mathcal{Y}($ e.g., $\mathcal{Y}=\{-1,1\})$

Formalism

Object: $x \in \mathcal{X}$

- Label: $y \in \mathcal{Y}$ (e.g., $\mathcal{Y}=\{-1,1\})$
- Training set: $S=\left(z_{1}, \ldots, z_{N}\right)$ with $z_{i}=\left(x_{i}, y_{i}\right) \in \mathcal{X} \times \mathcal{Y}$

Formalism

- Object: $x \in \mathcal{X}$
- Label: $y \in \mathcal{Y}$ (e.g., $\mathcal{Y}=\{-1,1\})$
- Training set: $S=\left(z_{1}, \ldots, z_{N}\right)$ with $z_{i}=\left(x_{i}, y_{i}\right) \in \mathcal{X} \times \mathcal{Y}$
- A classifier is any $f: \mathcal{X} \rightarrow \mathcal{Y}$
- A learning algorithm is:
\star a set of classifiers $\mathcal{F} \subset \mathcal{Y}^{\mathcal{X}}$
* a learning procedure: $S \in(\mathcal{X} \times \mathcal{Y})^{N} \rightarrow f \in \mathcal{F}$

Example: linear disrimination

- Objects: $\mathcal{X}=\mathbb{R}^{d}, \mathcal{Y}=\{-1,1\}$
- Classifiers: $\mathcal{F}=\left\{f_{w, b}:(w, b) \in \mathbb{R}^{d} \times \mathbb{R}\right\}$, where

$$
f_{w, b}(x)= \begin{cases}1 & \text { if } w \cdot x+b>0, \\ -1 & \text { if } w \cdot x+b \leq 0,\end{cases}
$$

- Algorithm: linear perceptron, Fisher discriminant, ...

Questions

- How to analyse/understand learning algorithms?
- How to design "good" learning algorithms?

Useful hypothesis: probabilistic setting

- Learning is only possible if the future is related to the past

Useful hypothesis: probabilistic setting

- Learning is only possible if the future is related to the past
- Mathematically: $\mathcal{X} \times \mathcal{Y}$ is a measurable set endowed with a probability measure P

Useful hypothesis: probabilistic setting

- Learning is only possible if the future is related to the past
- Mathematically: $\mathcal{X} \times \mathcal{Y}$ is a measurable set endowed with a probability measure P
- Past observations: Z_{1}, \ldots, Z_{N} are N independent and identically distributed (according to P) random variables

Useful hypothesis: probabilistic setting

- Learning is only possible if the future is related to the past
- Mathematically: $\mathcal{X} \times \mathcal{Y}$ is a measurable set endowed with a probability measure P
- Past observations: Z_{1}, \ldots, Z_{N} are N independent and identically distributed (according to P) random variables
- Future observations: a random variable Z_{N+1} also distributed according to P

Useful hypothesis: probabilistic setting

- Learning is only possible if the future is related to the past
- Mathematically: $\mathcal{X} \times \mathcal{Y}$ is a measurable set endowed with a probability measure P
- Past observations: Z_{1}, \ldots, Z_{N} are N independent and identically distributed (according to P) random variables
- Future observations: a random variable Z_{N+1} also distributed according to P
- The future is related to the past by P

How good is a classifier?

- Let $l: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$ a loss function (e.g., $0 / 1$ loss)

How good is a classifier?

- Let $l: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$ a loss function (e.g., $0 / 1$ loss)
- The risk of a classifier $f: \mathcal{X} \rightarrow \mathcal{Y}$ is the average loss:

$$
R(f)=E_{(X, Y) \sim P}[l(f(X), Y)]
$$

How good is a classifier?

- Let $l: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$ a loss function (e.g., $0 / 1$ loss)
- The risk of a classifier $f: \mathcal{X} \rightarrow \mathcal{Y}$ is the average loss:

$$
R(f)=E_{(X, Y) \sim P}[l(f(X), Y)]
$$

- Ideal goal: for a given (unknown) P, find

$$
f^{*}=\arg \inf _{f} R(f)
$$

How to learn a good classifier?

P is unknown, we must learn a classifier f from the training set S.

How to learn a good classifier?

- P is unknown, we must learn a classifier f from the training set S.
- For any classifier $f: \mathcal{X} \rightarrow \mathcal{Y}$, we can compute the empirical risk:

$$
R_{N}(f)=\frac{1}{N} \sum_{i=1}^{N} l\left(f\left(x_{i}\right), y_{i}\right)
$$

- Obviously, $R(f)=E_{S \sim P}\left[R_{N}(f)\right]$ for any $f \in \mathcal{F}$

Empirical risk minimization

- For a given class $\mathcal{F} \subset \mathcal{Y}^{\mathcal{X}}$, chose f that minimizes the empirical risk:

$$
\hat{f}_{N}=\arg \min _{f \in \mathcal{F}} R_{N}(f)
$$

Empirical risk minimization

- For a given class $\mathcal{F} \subset \mathcal{Y}^{\mathcal{X}}$, chose f that minimizes the empirical risk:

$$
\hat{f}_{N}=\arg \min _{f \in \mathcal{F}} R_{N}(f)
$$

- The best choice, if P was known, would be

$$
f_{0}=\arg \min _{f \in \mathcal{F}} R(f)
$$

Empirical risk minimization

- For a given class $\mathcal{F} \subset \mathcal{Y}^{\mathcal{X}}$, chose f that minimizes the empirical risk:

$$
\hat{f}_{N}=\arg \min _{f \in \mathcal{F}} R_{N}(f)
$$

- The best choice, if P was known, would be

$$
f_{0}=\arg \min _{f \in \mathcal{F}} R(f)
$$

- Central question: is $R\left(\hat{f_{N}}\right)$ close to $R\left(f_{0}\right)$?

Consistency issue

- An algorithm is called consistent iff

$$
\lim _{N \rightarrow \infty} R\left(\hat{f_{N}}\right)=R\left(f_{0}\right)
$$

- $R\left(\hat{f_{N}}\right)$ is random, so we need a notion of convergence for random variable, such as convergence in probability:

$$
\lim _{N \rightarrow \infty} P\left\{\left|R\left(\hat{f_{N}}\right)-R\left(f_{0}\right)\right|>\epsilon\right\}=0, \forall \epsilon>0
$$

Consistency and law of large numbers

- Classical law of large numbers: for any $f \in \mathcal{F}$,

$$
\lim _{N \rightarrow \infty} P\left\{\left|R_{N}(f)-R(f)\right|>\epsilon\right\}=0, \forall \epsilon>0
$$

Consistency and law of large numbers

- Classical law of large numbers: for any $f \in \mathcal{F}$,

$$
\lim _{N \rightarrow \infty} P\left\{\left|R_{N}(f)-R(f)\right|>\epsilon\right\}=0, \forall \epsilon>0
$$

- $0 \leq R\left(\hat{f_{N}}\right)-R\left(f_{0}\right) \leq\left[R\left(\hat{f_{N}}\right)-R_{N}\left(\hat{f_{N}}\right)\right]+\left[R_{N}\left(f_{0}\right)-R\left(f_{0}\right)\right]$
- The second term converges to 0 by classical LLN applied to f_{0}.
- What about the first one?

Uniform law of large numbers

- Classical LLN is not enough to ensure that:

$$
R\left(\hat{f_{N}}\right)-R_{N}\left(\hat{f_{N}}\right) \underset{N \rightarrow \infty}{\rightarrow} 0
$$

Uniform law of large numbers

- Classical LLN is not enough to ensure that:

$$
R\left(\hat{f_{N}}\right)-R_{N}\left(\hat{f_{N}}\right) \underset{N \rightarrow \infty}{\rightarrow} 0
$$

- Theorem: the ERM principle is consistent if and only if the following uniform law of large numbers holds:

$$
\lim _{N \rightarrow \infty} P\left\{\sup _{f \in \mathcal{F}}\left(R(f)-R_{N}(f)\right)>\epsilon\right\}=0, \forall \epsilon>0
$$

Vapnik-Chervonenkis entropy and consistency

- For any N, S and \mathcal{F}, let

$$
G_{\mathcal{F}}(N, S)=\operatorname{card}\left\{\left(f\left(x_{1}\right), \ldots, f\left(x_{N}\right)\right): f \in \mathcal{F}\right\}
$$

- Obviously, $G_{\mathcal{F}}(N, S) \leq 2^{N}$

Vapnik-Chervonenkis entropy and consistency

- For any N, S and \mathcal{F}, let

$$
G_{\mathcal{F}}(N, S)=\operatorname{card}\left\{\left(f\left(x_{1}\right), \ldots, f\left(x_{N}\right)\right): f \in \mathcal{F}\right\}
$$

- Obviously, $G_{\mathcal{F}}(N, S) \leq 2^{N}$
- Theorem: the ULLN holds if and only if:

$$
\lim _{N \rightarrow \infty} \frac{E_{S \sim P}\left[\ln G_{\mathcal{F}}(N, S)\right]}{N}=0 .
$$

Distribution-independent bound

- Theorem (Vapnik-Chervonenkis): For any $\delta>0$, the following holds with P-probability at least $1-\delta$:

$$
\forall f \in \mathcal{F}, R(f) \leq R_{N}(f)+\sqrt{\frac{\ln \sup _{S} G_{\mathcal{F}}(N, S)+\ln 1 / \delta}{8 N}} .
$$

Distribution-independent bound

- Theorem (Vapnik-Chervonenkis): For any $\delta>0$, the following holds with P-probability at least $1-\delta$:

$$
\forall f \in \mathcal{F}, R(f) \leq R_{N}(f)+\sqrt{\frac{\ln \sup _{S} G_{\mathcal{F}}(N, S)+\ln 1 / \delta}{8 N}} .
$$

- This is valid for any P !
- A sufficient condition for distribution-independent fast ULLN is:

$$
\lim _{N \rightarrow \infty} \frac{\ln _{\sup _{S} G_{\mathcal{F}}(N, S)}^{N}=0}{}
$$

VC dimension

- The VC dimension of \mathcal{F} is the largest number of points that can be shattered by \mathcal{F}, i.e., such that there exists a set S with

$$
G_{\mathcal{F}}(N, S)=2^{N}
$$

VC dimension

- The VC dimension of \mathcal{F} is the largest number of points that can be shattered by \mathcal{F}, i.e., such that there exists a set S with

$$
G_{\mathcal{F}}(N, S)=2^{N}
$$

- Example: for hyperplanes in \mathbb{R}^{d}, the VC dimension is $d+1$
$01+$
O/+
$\mathrm{O}+$
$0+$
$+0$

Sauer lemma

Let \mathcal{F} be a set with finite VC dimension h. Then

$$
\ln \sup _{S} G_{\mathcal{F}}(N, S) \begin{cases}=N & \text { if } N \leq h \\ \leq h \ln \frac{e N}{h} & \text { if } N \geq h\end{cases}
$$

VC dimension and learning

- Finiteness of the VC-dimension is a necessary and sufficient condition for uniform convergence independant of P

VC dimension and learning

- Finiteness of the VC-dimension is a necessary and sufficient condition for uniform convergence independant of P
- If \mathcal{F} has finite CV dimension h, then the following holds with probability at least $1-\delta$:

$$
\forall f \in \mathcal{F}, R(f) \leq R_{N}(f)+\sqrt{\frac{h \ln \frac{2 e N}{h}+\ln \frac{4}{\delta}}{8 N}} .
$$

Partie 2

Support vector machines

Structural risk minimization

- Define a nested family of function sets:

$$
\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \ldots \subset \mathcal{Y}^{\mathcal{X}}
$$

with increasing VC dimensions:

$$
h_{1} \leq h_{2} \leq \ldots
$$

- In each class, the ERM algorithm finds a classifier \hat{f}_{i} that satisfies:

$$
R\left(\hat{f}_{i}\right) \leq \inf _{f \in \mathcal{F}_{i}} R_{N}(f)+\sqrt{\frac{h_{i} \ln \frac{2 e N}{h_{i}}+\ln \frac{4}{\delta}}{8 N}} .
$$

Structural risk minimization (2)

- SRM principle: choose $\hat{f}=\hat{f}_{i}$ that minimizes the upper bound

Structural risk minimization (2)

- SRM principle: choose $\hat{f}=\hat{f}_{i}$ that minimizes the upper bound
- The validity of this prinple can also be justified mathematically

Curse of dimension?

- Remember the VC dim of the class of hyperplanes in \mathbb{R}^{d} is $d+1$
- Can not learn in large dimension?

Large margin hyperplanes

For a given set of points S in a ball of radius R, consider only the hyperplanes \mathcal{F}_{γ} that correctly separate the points with margin at least γ :

Large margin hyperplanes

For a given set of points S in a ball of radius R, consider only the hyperplanes \mathcal{F}_{γ} that correctly separate the points with margin at least γ :

(independent of the dimension!)

SRM on hyperplanes

Intuitively, select an hyperplane with:

- small empirical risk
- large margin

SRM on hyperplanes

Intuitively, select an hyperplane with:

- small empirical risk
- large margin

Support vector machines implement this principle.

Linear SVM

Dual formulation

The classification of a new point x is the sign of:

$$
f(x)=\sum_{i} \alpha_{i} \vec{x} \cdot \overrightarrow{x_{i}}+b,
$$

where α_{i} solves:

$$
\left\{\begin{array}{l}
\left.\max _{\vec{\alpha}} \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \overrightarrow{x_{i}} \cdot \overrightarrow{x_{j}}\right) \\
\forall i=1, \ldots, n \quad 0 \leq \alpha_{i} \leq C \\
\sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{array}\right.
$$

Sometimes linear classifiers are not interesting

Solution: non-linear mapping to a feature space

Example

Let $\Phi(\vec{x})=\left(x_{1}^{2}, x_{2}^{2}\right)^{\prime}, \vec{w}=(1,1)^{\prime}$ and $b=1$. Then the decision function is:

$$
f(\vec{x})=x_{1}^{2}+x_{2}^{2}-R^{2}=\vec{w} \cdot \Phi(\vec{x})+b,
$$

Kernel (simple but important)

For a given mapping Φ from the space of objects \mathcal{X} to some feature space, the kernel of two objects x and x^{\prime} is the inner product of their images in the features space:

$$
\forall x, x^{\prime} \in \mathcal{X}, \quad K\left(x, x^{\prime}\right)=\vec{\Phi}(x) \cdot \vec{\Phi}\left(x^{\prime}\right)
$$

Example: if $\vec{\Phi}(\vec{x})=\left(x_{1}^{2}, x_{2}^{2}\right)^{\prime}$, then

$$
K\left(\vec{x}, \vec{x}^{\prime}\right)=\vec{\Phi}(\vec{x}) \cdot \vec{\Phi}\left(\vec{x}^{\prime}\right)=\left(x_{1}\right)^{2}\left(x_{1}^{\prime}\right)^{2}+\left(x_{2}\right)^{2}\left(x_{2}^{\prime}\right)^{2} .
$$

Training a SVM in the feature space

Replace each $\vec{x} \cdot \vec{x}^{\prime}$ in the SVM algorithm by $K\left(x, x^{\prime}\right)$
The dual problem is to maximize

$$
L(\vec{\alpha})=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(x_{i}, x_{j}\right),
$$

under the constraints:

$$
\left\{\begin{array}{l}
0 \leq \alpha_{i} \leq C, \quad \text { for } i=1, \ldots, N \\
\sum_{i=1}^{N} \alpha_{i} y_{i}=0
\end{array}\right.
$$

Predicting with a SVM in the feature space

The decision function becomes:

$$
\begin{align*}
f(x) & =\vec{w}^{*} \cdot \vec{\Phi}(x)+b^{*} \\
& =\sum_{i=1}^{N} \alpha_{i} K\left(x_{i}, x\right)+b^{*} . \tag{1}
\end{align*}
$$

The kernel trick

- The explicit computation of $\vec{\Phi}(x)$ is not necessary. The kernel $K\left(x, x^{\prime}\right)$ is enough. SVM work implicitly in the feature space.
- It is sometimes possible to easily compute kernels which correspond to complex large-dimensional feature spaces.

Kernel example

For any vector $\vec{x}=\left(x_{1}, x_{2}\right)^{\prime}$, consider the mapping:

$$
\Phi(\vec{x})=\left(x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}, \sqrt{2} x_{1}, \sqrt{2} x_{2}, 1\right)^{\prime} .
$$

The associated kernel is:

$$
\begin{aligned}
K\left(\vec{x}, \vec{x}^{\prime}\right) & =\Phi(\vec{x}) \cdot \Phi\left(\vec{x}^{\prime}\right) \\
& =\left(x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}+1\right)^{2} \\
& =\left(\vec{x} \cdot \vec{x}^{\prime}+1\right)^{2}
\end{aligned}
$$

Classical kernels for vectors

- Polynomial:

$$
K\left(x, x^{\prime}\right)=\left(x \cdot x^{\prime}+1\right)^{d}
$$

- Gaussian radial basis function

$$
K\left(x, x^{\prime}\right)=\exp \left(\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)
$$

- Sigmoid

$$
K\left(x, x^{\prime}\right)=\tanh \left(\kappa x \cdot x^{\prime}+\theta\right)
$$

Example: classification with a Gaussian kernel

$$
f(\vec{x})=\sum_{i=1}^{N} \alpha_{i} \exp \left(\frac{\left\|\vec{x}-\vec{x}_{i}\right\|^{2}}{2 \sigma^{2}}\right)
$$

Kernels

For any set \mathcal{X}, a function $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a kernel iff:

- it is symetric :

$$
K(x, y)=K(y, x)
$$

- it is positive semi-definite:

$$
\sum_{i, j} a_{i} a_{j} K\left(x_{i}, x_{j}\right) \geq 0
$$

for all $a_{i} \in \mathbb{R}$ and $x_{i} \in \mathcal{X}$

Kernel properties

- The set of kernels is a convex cone closed under the topology of pointwise convergence
- Closed under the Schur product $K_{1}(x, y) K_{2}(x, y)$
- Bochner theorem: in \mathbb{R}^{d},

$$
K(x, y)=\phi(x-y)
$$

is a kernel iff ϕ has a non-negative Fourier transform (generalization to more general groups and semi-groups)

Partie 3

Computational biology

Overview

- 1990-95: DNA chips
- 2003: completion of the Human Genome Projects
- Gene sequences, structures, expression, localization, phenotypes, SNP, ... many many data
- Pharmacy, environment, food, ... many applications

Data examples

Data examples

(From Spellman et al., 1998)

Data examples

Pattern recognition examples

- Medical diagnosis from gene expression
- Functional genomics
- Structural genomics
- Drug design
- ... SVM are being applied

Partie 4

Virtual screening of small molecules

The problem

- Objects = chemical compounds (formula, structure..)

- Problem $=$ predict their:
* drugability
\star pharmacocinetics
夫 activity on a target etc...

Classical approaches

- Use molecular descriptors to represent the compouds as vectors
- Select a limited numbers of relevant descriptors
- Use linear regression, NN, nearest neighbour etc...

SVM approach

- We need a kernel $K\left(c_{1}, c_{2}\right)$ between compounds

SVM approach

- We need a kernel $K\left(c_{1}, c_{2}\right)$ between compounds
- One solution: inner product between vectors

SVM approach

- We need a kernel $K\left(c_{1}, c_{2}\right)$ between compounds
- One solution: inner product between vectors
- Alternative solution: define a kernel directly using graph comparison tools

Example: graph kernel (Kashima et al., 2003)

Example: graph kernel (Kashima et al., 2003)

$$
\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{C}=\mathrm{O}
$$

Extract random paths

Example: graph kernel (Kashima et al., 2003)

Extract random paths

Example: graph kernel (Kashima et al., 2003)

- Let H_{1} be a random path of a compound c_{1}
- Let H_{2} be a random path of a compound c_{2}
- The following is a valid kernel:

$$
K\left(c_{1}, c_{2}\right)=\operatorname{Prob}\left(H_{1}=H_{2}\right)
$$

Remarks

- The feature space is infinite-dimensional (all possible paths)

Remarks

- The feature space is infinite-dimensional (all possible paths)
- The kernel can be computed efficiently

Remarks

- The feature space is infinite-dimensional (all possible paths)
- The kernel can be computed efficiently
- Two compounds are compared in terms of their common substructures

Remarks

- The feature space is infinite-dimensional (all possible paths)
- The kernel can be computed efficiently
- Two compounds are compared in terms of their common substructures
-What about kernels for the 3D structure?

Conclusion

Conclusion

- Important developments of statistical learning theory recently
- Involve several fields: probability/statistics, functional analysis, optimization, harmonic analysis on semigroups, differential geometry...
- Results in useful state-of-the-art algorithms in many fields
- Computational biology directly benefits from these developments... but it's only the begining

