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Overview

1. Statistical learning theory

2. Support vector machines
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The pattern recognition problem
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Pattern recognition applications

Multimedia (OCR, speech recognition, spam filter,..)

Finance, Marketing
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Formalism

Object: x € X
Label: y € Y (e.g., Y ={-1,1})

Training set: S = (z1,...,2yx) with z; = (z;,vy;) € X X Y




Example: linear disrimination

Objects: X =RY , Y ={-1,1}

Classifiers: F = { fyp: (w,b) € R x R}, where
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Questions

How to analyse/understand learning algorithms?

How to design "good” learning algorithms?
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Useful hypothesis: probabilistic setting

Learning is only possible if the future is related to the past
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How to learn a good classifier?

P is unknown, we must learn a classifier f from the training set S.
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How to learn a good classifier?

P is unknown, we must learn a classifier f from the training set S.

For any classifier f : X — ), we can compute the empirical risk:
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Empirical risk minimization

For a given class F C Y%, chose f that minimizes the empirical
risk:

; -
fn e ~N(f)
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Consistency issue

An algorithm is called consistent iff

A

lim R(fn) = R(fo)

N —o0
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Consistency and law of large numbers

Classical law of large numbers: for any f € F,

lim P{|Rn(f)— R(f)| > €} =0,Ve> 0.

N —o0
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Uniform law of large numbers

Classical LLN is not enough to ensure that:

A A
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Uniform law of large numbers

Classical LLN is not enough to ensure that:

A A

R(fn) — Bn(fn) — O

N —o0
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Vapnik-Chervonenkis entropy and consistency

For any IV, S and F, let

Gr(N,S)=card{(f(x1),...,f(zNn)): f € F}
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Vapnik-Chervonenkis entropy and consistency

For any IV, S and F, let

Gr(N,S) = card{(f(z1),...,f(zn)) : f € F}
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Distribution-independent bound

Theorem (Vapnik-Chervonenkis): For any § > 0, the following
holds with P-probability at least 1 — 9:

Insupg G#(N,S) +1Inl1/é
8N :

Vf € FLRU) < Ra(f) + 1/
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VC dimension

The VC dimension of F is the largest number of points that can
be shattered by F, i.e., such that there exists a set S with

Gr(N,S) =2V
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Sauer lemma

Let F be a set with finite VC dimension h. Then

— N if N <h,
<hln€Y if N>h

Insup G£(N, S) {
S
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VC dimension and learning

Finiteness of the V(C-dimension is a necessary and sufficient
condition for uniform convergence independant of P
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VC dimension and learning

Finiteness of the V(C-dimension is a necessary and sufficient
condition for uniform convergence independant of P

If F has finite CV dimension h, then the following holds with
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Partie 2

Support vector machines
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Structural risk minimization

Define a nested family of function sets:

flc.FQC...CyX

with increasing VC dimensions:
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Structural risk minimization (2)

SRM principle: choose fz f’z that minimizes the upper bound
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Structural risk minimization (2)

SRM principle: choose fz f’z that minimizes the upper bound

The validity of this prinple can also be justified mathematically
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Curse of dimension?

Remember the VC dim of the class of hyperplanes in R? is d + 1

Can not learn in large dimension?
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Large margin hyperplanes

For a given set of points S in a ball of radius R, consider only the
hyperplanes F., that correctly separate the points with margin at
least ~:
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Large margin hyperplanes

For a given set of points S in a ball of radius R, consider only the
hyperplanes F., that correctly separate the points with margin at
least ~:
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SRM on hyperplanes

Intuitively, select an hyperplane with:

small empirical risk
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SRM on hyperplanes

Intuitively, select an hyperplane with:

small empirical risk
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Linear SVM
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Dual formulation

The classification of a new point z is the sign of:

fl@) =) a;@d;+b,
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Sometimes linear classifiers are not interesting
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Solution: non-linear mapping to a feature space
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DE]]E
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Kernel (simple but important)

For a given mapping ® from the space of objects X to some feature
space, the kernel of two objects x and z’ is the inner product of their
images in the features space:

Vo, o' € X, K(z,2') = ®(z).9(2).
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Training a SVM in the feature space

Replace each Z.2" in the SVM algorithm by K(x,z’)

The dual problem is to maximize
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Predicting with a SVM in the feature space

The decision function becomes:

f(z) = & .B(z) + b*
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The kernel trick

The explicit computation of 5(x) is not necessary. The kernel
K(x,2") is enough. SVM work implicitly in the feature space.

It is sometimes possible to easily compute kernels which correspond
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Kernel example

For any vector & = (x1,xz2)’, consider the mapping:

¢ (%) = (xl,xQ,\/_:cla;g,\/_:cl,\/—x2, ) :
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Classical kernels for vectors

Polynomial:
K(z,2') = (x.a’ +1)¢

Gaussian radial basis function




Example:

classification with a Gaussian kernel

44



)

LCIES

For any set X', a function K : X x X — R is a kernel iff:

It Is symetric :

K(z,y) = K(y, z),
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Kernel properties

The set of kernels is a convex cone closed under the topology of
pointwise convergence

Closed under the Schur product Ki(x,y)Ks(x,y)
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Computational biology
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Overview

1990-95: DNA chips

2003: completion of the Human Genome Projects




Data examples

2D and 3D structure of prion

49
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Data examples

w . A Ipihva
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Data examples
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Pattern recognition examples

Medical diagnosis from gene expression

Functional genomics
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Partie 4

Virtual screening of small
molecules
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The problem

Objects = chemical compounds (formula, structure..)

C

\ C
\/\/O
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Classical approaches

Use molecular descriptors to represent the compouds as vectors

Select a limited numbers of relevant descriptors
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SVM approach

We need a kernel K (c1,cz) between compounds
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SVM approach
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Example: graph kernel (Kashima et al., 2003)

N C
\C/ \C/O




58

Example: graph kernel (Kashima et al., 2003)




59

Example: graph kernel (Kashima et al., 2003)




60

Example: graph kernel (Kashima et al., 2003)

Let H; be a random path of a compound ¢;

Let Hy be a random path of a compound cs
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Remarks

The feature space is infinite-dimensional (all possible paths)
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Conclusion

Important developments of statistical learning theory recently

Involve several fields: probability/statistics, functional analysis,
optimization, harmonic analysis on semigroups, differential
eometry...




