Statistical learning theory, Support vector machines, and Bioinformatics

Jean-Philippe.Vert@mines.org

Ecole des Mines de Paris Computational Biology group

ENS Paris, november 25, 2003.

Overview

- 1. Statistical learning theory
- 2. Support vector machines
- 3. Computational biology
- 4. Short example: virtual screening for drug design

Statistical learning theory

The pattern recognition problem

The pattern recognition problem

• Learn from labelled examples a discrimination rule

The pattern recognition problem

- Learn from labelled examples a discrimination rule
- Use it to predict the class of new points

Pattern recognition applications

- Multimedia (OCR, speech recognition, spam filter,..)
- Finance, Marketing
- Bioinformatics, medical diagnosis, drug design,...

• Object: $x \in \mathcal{X}$

- Object: $x \in \mathcal{X}$
- Label: $y \in \mathcal{Y}$ (e.g., $\mathcal{Y} = \{-1, 1\}$)

- Object: $x \in \mathcal{X}$
- Label: $y \in \mathcal{Y}$ (e.g., $\mathcal{Y} = \{-1, 1\}$)
- Training set: $S = (z_1, \ldots, z_N)$ with $z_i = (x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$

- Object: $x \in \mathcal{X}$
- Label: $y \in \mathcal{Y}$ (e.g., $\mathcal{Y} = \{-1, 1\}$)
- Training set: $S = (z_1, \ldots, z_N)$ with $z_i = (x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$
- A classifier is any $f: \mathcal{X} \to \mathcal{Y}$
- A learning algorithm is:
 - \star a set of classifiers $\mathcal{F} \subset \mathcal{Y}^{\mathcal{X}}$
 - ★ a learning procedure: $S \in (\mathcal{X} \times \mathcal{Y})^N \to f \in \mathcal{F}$

Example: linear disrimination

- Objects: $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{-1,1\}$
- Classifiers: $\mathcal{F} = \{f_{w,b} : (w,b) \in \mathbb{R}^d \times \mathbb{R}\}$, where

$$f_{w,b}(x) = \begin{cases} 1 & \text{if } w.x + b > 0, \\ -1 & \text{if } w.x + b \le 0, \end{cases}$$

• Algorithm: linear perceptron, Fisher discriminant, ...

Questions

- How to analyse/understand learning algorithms?
- How to design "good" learning algorithms?

• Learning is only possible if the future is related to the past

- Learning is only possible if the future is related to the past
- Mathematically: $\mathcal{X} \times \mathcal{Y}$ is a measurable set endowed with a probability measure P

- Learning is only possible if the future is related to the past
- Mathematically: $\mathcal{X} \times \mathcal{Y}$ is a measurable set endowed with a probability measure P
- Past observations: Z₁,..., Z_N are N independent and identically distributed (according to P) random variables

- Learning is only possible if the future is related to the past
- Mathematically: $\mathcal{X} \times \mathcal{Y}$ is a measurable set endowed with a probability measure P
- Past observations: Z₁,..., Z_N are N independent and identically distributed (according to P) random variables
- Future observations: a random variable Z_{N+1} also distributed according to P

- Learning is only possible if the future is related to the past
- Mathematically: $\mathcal{X} \times \mathcal{Y}$ is a measurable set endowed with a probability measure P
- Past observations: Z₁,..., Z_N are N independent and identically distributed (according to P) random variables
- Future observations: a random variable Z_{N+1} also distributed according to P
- The future is related to the past by P

How good is a classifier?

• Let $l : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ a loss function (e.g., 0/1 loss)

How good is a classifier?

- Let $l: \mathcal{Y} \times \overline{\mathcal{Y}} \to \mathbb{R}$ a loss function (e.g., 0/1 loss)
- The risk of a classifier $f : \mathcal{X} \to \mathcal{Y}$ is the average loss:

 $R(f) = E_{(X,Y)\sim P}\left[l(f(X),Y)\right]$

How good is a classifier?

- Let $l: \mathcal{Y} \times \overline{\mathcal{Y}} \to \mathbb{R}$ a loss function (e.g., 0/1 loss)
- The risk of a classifier $f : \mathcal{X} \to \mathcal{Y}$ is the average loss:

 $R(f) = E_{(X,Y)\sim P}\left[l(f(X),Y)\right]$

• Ideal goal: for a given (unknown) P, find

 $f^* = \arg \inf_f R(f)$

How to learn a good classifier?

• P is unknown, we must learn a classifier f from the training set S.

How to learn a good classifier?

• P is unknown, we must learn a classifier f from the training set S.

• For any classifier $f : \mathcal{X} \to \mathcal{Y}$, we can compute the empirical risk:

$$R_N(f) = \frac{1}{N} \sum_{i=1}^{N} l(f(x_i), y_i)$$

• Obviously, $R(f) = E_{S \sim P} \left[R_N(f) \right]$ for any $f \in \mathcal{F}$

Empirical risk minimization

• For a given class $\mathcal{F} \subset \mathcal{Y}^{\mathcal{X}}$, chose f that minimizes the empirical risk:

 $\hat{f}_N = \arg\min_{f\in\mathcal{F}} R_N(f)$

Empirical risk minimization

• For a given class $\mathcal{F} \subset \mathcal{Y}^{\mathcal{X}}$, chose f that minimizes the empirical risk:

 $\hat{f}_N = \arg\min_{f\in\mathcal{F}} R_N(f)$

• The best choice, if P was known, would be

 $f_0 = \arg\min_{f\in\mathcal{F}} R(f)$

Empirical risk minimization

• For a given class $\mathcal{F} \subset \mathcal{Y}^{\mathcal{X}}$, chose f that minimizes the empirical risk:

 $\hat{f}_N = \arg\min_{f\in\mathcal{F}} R_N(f)$

• The best choice, if P was known, would be

 $f_0 = \arg\min_{f\in\mathcal{F}} R(f)$

• Central question: is $R(\hat{f_N})$ close to $R(f_0)$?

Consistency issue

• An algorithm is called consistent iff

$$\lim_{N \to \infty} R(\hat{f_N}) = R(f_0)$$

• $R(f_N)$ is random, so we need a notion of convergence for random variable, such as convergence in probability:

$$\lim_{N \to \infty} P\left\{ \left| R(\hat{f}_N) - R(f_0) \right| > \epsilon \right\} = 0, \forall \epsilon > 0.$$

Consistency and law of large numbers

• Classical law of large numbers: for any $f \in \mathcal{F}$,

 $\lim_{N \to \infty} P\left\{ |R_N(f) - R(f)| > \epsilon \right\} = 0, \forall \epsilon > 0.$

Consistency and law of large numbers

• Classical law of large numbers: for any $f \in \mathcal{F}$,

 $\lim_{N \to \infty} P\left\{ |R_N(f) - R(f)| > \epsilon \right\} = 0, \forall \epsilon > 0.$

•
$$0 \le R(\hat{f_N}) - R(f_0) \le \left[R(\hat{f_N}) - R_N(\hat{f_N})\right] + \left[R_N(f_0) - R(f_0)\right]$$

• The second term converges to 0 by classical LLN applied to f_0 .

• What about the first one?

Uniform law of large numbers

• Classical LLN is not enough to ensure that:

$$R(\hat{f_N}) - R_N(\hat{f_N}) \xrightarrow[N \to \infty]{} 0$$

Uniform law of large numbers

• Classical LLN is not enough to ensure that:

$$R(\hat{f_N}) - R_N(\hat{f_N}) \xrightarrow[N \to \infty]{} 0$$

• Theorem: the ERM principle is consistent if and only if the following uniform law of large numbers holds:

$$\lim_{N \to \infty} P\left\{ \sup_{f \in \mathcal{F}} \left(R(f) - R_N(f) \right) > \epsilon \right\} = 0, \forall \epsilon > 0.$$

Vapnik-Chervonenkis entropy and consistency

• For any N, S and ${\mathcal F}$, let

 $G_{\mathcal{F}}(N,S) = card\left\{ \left(f(x_1), \dots, f(x_N) \right) : f \in \mathcal{F} \right\}$

• Obviously, $G_{\mathcal{F}}(N,S) \leq 2^N$

Vapnik-Chervonenkis entropy and consistency

• For any N, S and \mathcal{F} , let

 $G_{\mathcal{F}}(N,S) = card\left\{ (f(x_1), \dots, f(x_N)) : f \in \mathcal{F} \right\}$

• Obviously, $G_\mathcal{F}(N,S) \leq 2^N$

• Theorem: the ULLN holds if and only if:

$$\lim_{N \to \infty} \frac{E_{S \sim P} \left[\ln G_{\mathcal{F}}(N, S) \right]}{N} = 0.$$

Distribution-independent bound

• Theorem (Vapnik-Chervonenkis): For any $\delta > 0$, the following holds with P-probability at least $1 - \delta$:

$$\forall f \in \mathcal{F}, R(f) \le R_N(f) + \sqrt{\frac{\ln \sup_S G_{\mathcal{F}}(N, S) + \ln 1/\delta}{8N}}$$

Distribution-independent bound

• Theorem (Vapnik-Chervonenkis): For any $\delta > 0$, the following holds with P-probability at least $1 - \delta$:

$$\forall f \in \mathcal{F}, R(f) \le R_N(f) + \sqrt{\frac{\ln \sup_S G_{\mathcal{F}}(N, S) + \ln 1/\delta}{8N}}.$$

- This is valid for any P!
- A sufficient condition for distribution-independent fast ULLN is:

$$\lim_{N \to \infty} \frac{\ln \sup_{S} G_{\mathcal{F}}(N, S)}{N} = 0$$

VC dimension

 The VC dimension of *F* is the largest number of points that can be shattered by *F*, i.e., such that there exists a set *S* with

 $G_{\mathcal{F}}(N,S) = 2^N$
VC dimension

 The VC dimension of *F* is the largest number of points that can be shattered by *F*, i.e., such that there exists a set *S* with

 $G_{\mathcal{F}}(N,S) = 2^N$

• Example: for hyperplanes in \mathbb{R}^d , the VC dimension is d+1

Sauer lemma

Let \mathcal{F} be a set with finite VC dimension h. Then

$$\ln \sup_{S} G_{\mathcal{F}}(N,S) \begin{cases} = N & \text{if } N \leq h, \\ \leq h \ln \frac{eN}{h} & \text{if } N \geq h \end{cases}$$

VC dimension and learning

• Finiteness of the VC-dimension is a necessary and sufficient condition for uniform convergence independent of *P*

VC dimension and learning

- Finiteness of the VC-dimension is a necessary and sufficient condition for uniform convergence independent of *P*
- If \mathcal{F} has finite CV dimension h, then the following holds with probability at least 1δ :

$$\forall f \in \mathcal{F}, R(f) \le R_N(f) + \sqrt{\frac{h \ln \frac{2eN}{h} + \ln \frac{4}{\delta}}{8N}}.$$

Support vector machines

Structural risk minimization

• Define a nested family of function sets:

 $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots \subset \mathcal{Y}^{\mathcal{X}}$

with increasing VC dimensions:

 $h_1 \leq h_2 \leq \ldots$

• In each class, the ERM algorithm finds a classifier \hat{f}_i that satisfies:

$$R(\hat{f}_i) \le \inf_{f \in \mathcal{F}_i} R_N(f) + \sqrt{\frac{h_i \ln \frac{2eN}{h_i} + \ln \frac{4}{\delta}}{8N}}$$

Structural risk minimization (2)

• SRM principle: choose $\hat{f} = \hat{f}_i$ that minimizes the upper bound

Structural risk minimization (2)

- SRM principle: choose $\hat{f} = \hat{f}_i$ that minimizes the upper bound
- The validity of this prinple can also be justified mathematically

Curse of dimension?

- Remember the VC dim of the class of hyperplanes in \mathbb{R}^d is d+1
- Can not learn in large dimension?

Large margin hyperplanes

For a given set of points S in a ball of radius R, consider only the hyperplanes \mathcal{F}_{γ} that correctly separate the points with margin at least γ :

Large margin hyperplanes

For a given set of points S in a ball of radius R, consider only the hyperplanes \mathcal{F}_{γ} that correctly separate the points with margin at least γ :

 $VC(\mathcal{F}_{\gamma})$

(independent of the dimension!)

SRM on hyperplanes

Intuitively, select an hyperplane with:

- small empirical risk
- large margin

SRM on hyperplanes

Intuitively, select an hyperplane with:

- small empirical risk
- large margin

Support vector machines implement this principle.

Dual formulation

The classification of a new point x is the sign of:

$$f(x) = \sum_{i} \alpha_i \vec{x} \cdot \vec{x_i} + b,$$

where α_i solves:

$$\begin{cases} \max_{\vec{\alpha}} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \vec{x_{i}} \cdot \vec{x_{j}} \\ \forall i = 1, \dots, n \quad 0 \le \alpha_{i} \le C \\ \sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \end{cases}$$

Sometimes linear classifiers are not interesting

Solution: non-linear mapping to a feature space

Example

Let $\Phi(\vec{x}) = (x_1^2, x_2^2)'$, $\vec{w} = (1, 1)'$ and b = 1. Then the decision function is:

$$f(\vec{x}) = x_1^2 + x_2^2 - R^2 = \vec{w} \cdot \Phi(\vec{x}) + b,$$

Kernel (simple but important)

For a given mapping Φ from the space of objects \mathcal{X} to some feature space, the kernel of two objects x and x' is the inner product of their images in the features space:

$$\forall x, x' \in \mathcal{X}, \quad K(x, x') = \overline{\Phi}(x).\overline{\Phi}(x').$$

Example: if $\vec{\Phi}(\vec{x}) = (x_1^2, x_2^2)'$, then $K(\vec{x}, \vec{x}') = \vec{\Phi}(\vec{x}) \cdot \vec{\Phi}(\vec{x}') = (x_1)^2 (x_1')^2 + (x_2)^2 (x_2')^2.$

Training a SVM in the feature space

Replace each $\vec{x}.\vec{x}'$ in the SVM algorithm by K(x,x')

The dual problem is to maximize

$$L(\vec{\alpha}) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{N} \alpha_i \alpha_j y_i y_j K(x_i, x_j),$$

under the constraints:

$$\begin{cases} 0 \le \alpha_i \le C, & \text{for } i = 1, \dots, N \\ \sum_{i=1}^N \alpha_i y_i = 0. \end{cases}$$

Predicting with a SVM in the feature space

The decision function becomes:

$$f(x) = \vec{w}^* \cdot \vec{\Phi}(x) + b^*$$

$$= \sum_{i=1}^N \alpha_i K(x_i, x) + b^*.$$
(1)

The kernel trick

- The explicit computation of $\vec{\Phi}(x)$ is not necessary. The kernel K(x, x') is enough. SVM work implicitly in the feature space.
- It is sometimes possible to easily compute kernels which correspond to complex large-dimensional feature spaces.

Kernel example

For any vector $\vec{x} = (x_1, x_2)'$, consider the mapping:

$$\Phi(\vec{x}) = \left(x_1^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1\right)'.$$

The associated kernel is:

$$K(\vec{x}, \vec{x}') = \Phi(\vec{x}) \cdot \Phi(\vec{x}')$$

= $(x_1 x'_1 + x_2 x'_2 + 1)^2$
= $(\vec{x} \cdot \vec{x}' + 1)^2$

Classical kernels for vectors

• Polynomial:

$$K(x, x') = (x \cdot x' + 1)^d$$

• Gaussian radial basis function

$$K(x, x') = \exp\left(\frac{||x - x'||^2}{2\sigma^2}\right)$$

• Sigmoid

$$K(x, x') = \tanh(\kappa x \cdot x' + \theta)$$

Example: classification with a Gaussian kernel

$$f(\vec{x}) = \sum_{i=1}^{N} \alpha_i \exp\left(\frac{||\vec{x} - \vec{x}_i||^2}{2\sigma^2}\right)$$

Kernels

For any set \mathcal{X} , a function $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a kernel iff:

• it is symetric :

K(x,y) = K(y,x),

• it is positive semi-definite:

$$\sum_{i,j} a_i a_j K(x_i, x_j) \ge 0$$

for all $a_i \in \mathbb{R}$ and $x_i \in \mathcal{X}$

Kernel properties

- The set of kernels is a convex cone closed under the topology of pointwise convergence
- Closed under the Schur product $K_1(x,y)K_2(x,y)$
- Bochner theorem: in \mathbb{R}^d ,

$$K(x,y) = \phi(x-y)$$

is a kernel iff ϕ has a non-negative Fourier transform (generalization to more general groups and semi-groups)

Computational biology

Overview

- 1990-95: DNA chips
- 2003: completion of the Human Genome Projects
- Gene sequences, structures, expression, localization, phenotypes, SNP, ... many many data
- Pharmacy, environment, food, ... many applications

Data examples

2D and 3D structure of prion

Data examples

(From Spellman et al., 1998)

Data examples

Pattern recognition examples

- Medical diagnosis from gene expression
- Functional genomics
- Structural genomics
- Drug design
- ... SVM are being applied

Partie 4

Virtual screening of small molecules

The problem

• Objects = chemical compounds (formula, structure..)

- Problem = predict their:
 - * drugability
 - * pharmacocinetics
 - ★ activity on a target etc...

Classical approaches

- Use molecular descriptors to represent the compouds as vectors
- Select a limited numbers of relevant descriptors
- Use linear regression, NN, nearest neighbour etc...

SVM approach

• We need a kernel $K(c_1, c_2)$ between compounds

SVM approach

- We need a kernel $K(c_1, c_2)$ between compounds
- One solution: inner product between vectors

SVM approach

- We need a kernel $K(c_1, c_2)$ between compounds
- One solution: inner product between vectors
- Alternative solution: define a kernel directly using graph comparison tools

Extract random paths

- Let H_1 be a random path of a compound c_1
- Let H_2 be a random path of a compound c_2
- The following is a valid kernel:

 $K(c_1, c_2) = \operatorname{Prob}(H_1 = H_2).$

• The feature space is infinite-dimensional (all possible paths)

- The feature space is infinite-dimensional (all possible paths)
- The kernel can be computed efficiently

- The feature space is infinite-dimensional (all possible paths)
- The kernel can be computed efficiently
- Two compounds are compared in terms of their common substructures

- The feature space is infinite-dimensional (all possible paths)
- The kernel can be computed efficiently
- Two compounds are compared in terms of their common substructures
- What about kernels for the 3D structure?

Conclusion

Conclusion

- Important developments of statistical learning theory recently
- Involve several fields: probability/statistics, functional analysis, optimization, harmonic analysis on semigroups, differential geometry...
- Results in useful state-of-the-art algorithms in many fields
- Computational biology directly benefits from these developments... but it's only the begining