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Overview

1. Statistical learning theory

2. Support vector machines

3. Computational biology

4. Short example: virtual screening for drug design
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Partie 1

Statistical learning theory
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The pattern recognition problem
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The pattern recognition problem

• Learn from labelled examples a discrimination rule
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The pattern recognition problem

• Learn from labelled examples a discrimination rule

• Use it to predict the class of new points
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Pattern recognition applications

• Multimedia (OCR, speech recognition, spam filter,..)

• Finance, Marketing

• Bioinformatics, medical diagnosis, drug design,...
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Formalism

• Object: x ∈ X
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Formalism

• Object: x ∈ X

• Label: y ∈ Y (e.g., Y = {−1, 1})

• Training set: S = (z1, . . . , zN) with zi = (xi, yi) ∈ X × Y

• A classifier is any f : X → Y

• A learning algorithm is:

? a set of classifiers F ⊂ YX
? a learning procedure: S ∈ (X × Y)N → f ∈ F
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Example: linear disrimination

• Objects: X = Rd , Y = {−1, 1}

• Classifiers: F =
{
fw,b : (w, b) ∈ Rd × R

}
, where

fw,b(x) =

{
1 if w.x + b > 0,

−1 if w.x + b ≤ 0,

• Algorithm: linear perceptron, Fisher discriminant, ...



10

Questions

• How to analyse/understand learning algorithms?

• How to design ”good” learning algorithms?
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Useful hypothesis: probabilistic setting

• Learning is only possible if the future is related to the past
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Useful hypothesis: probabilistic setting

• Learning is only possible if the future is related to the past

• Mathematically: X × Y is a measurable set endowed with a

probability measure P

• Past observations: Z1, . . . , ZN are N independent and identically

distributed (according to P ) random variables

• Future observations: a random variable ZN+1 also distributed

according to P

• The future is related to the past by P
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How good is a classifier?

• Let l : Y × Y → R a loss function ( e.g., 0/1 loss)
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How good is a classifier?

• Let l : Y × Y → R a loss function ( e.g., 0/1 loss)

• The risk of a classifier f : X → Y is the average loss:

R(f) = E(X,Y )∼P [l(f(X), Y )]

• Ideal goal: for a given (unknown) P , find

f∗ = arg inf
f

R(f)
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How to learn a good classifier?

• P is unknown, we must learn a classifier f from the training set S.
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How to learn a good classifier?

• P is unknown, we must learn a classifier f from the training set S.

• For any classifier f : X → Y, we can compute the empirical risk:

RN(f) =
1
N

N∑
i=1

l(f(xi), yi)

• Obviously, R(f) = ES∼P [RN(f)] for any f ∈ F
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Empirical risk minimization

• For a given class F ⊂ YX , chose f that minimizes the empirical

risk:

f̂N = arg min
f∈F

RN(f)
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Empirical risk minimization
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Empirical risk minimization

• For a given class F ⊂ YX , chose f that minimizes the empirical

risk:

f̂N = arg min
f∈F

RN(f)

• The best choice, if P was known, would be

f0 = arg min
f∈F

R(f)

• Central question: is R(f̂N) close to R(f0)?



15

Consistency issue

• An algorithm is called consistent iff

lim
N→∞

R(f̂N) = R(f0)

• R(f̂N) is random, so we need a notion of convergence for random

variable, such as convergence in probability:

lim
N→∞

P
{
|R(f̂N)−R(f0)| > ε

}
= 0,∀ε > 0.
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Consistency and law of large numbers

• Classical law of large numbers: for any f ∈ F ,

lim
N→∞

P {|RN(f)−R(f)| > ε} = 0,∀ε > 0.



16

Consistency and law of large numbers

• Classical law of large numbers: for any f ∈ F ,

lim
N→∞

P {|RN(f)−R(f)| > ε} = 0,∀ε > 0.

• 0 ≤ R(f̂N)−R(f0) ≤
[
R(f̂N)−RN(f̂N)

]
+ [RN(f0)−R(f0)]

• The second term converges to 0 by classical LLN applied to f0.

• What about the first one?
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Uniform law of large numbers

• Classical LLN is not enough to ensure that:

R(f̂N)−RN(f̂N) →
N→∞

0
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Uniform law of large numbers

• Classical LLN is not enough to ensure that:

R(f̂N)−RN(f̂N) →
N→∞

0

• Theorem: the ERM principle is consistent if and only if the following

uniform law of large numbers holds:

lim
N→∞

P

{
sup
f∈F

(R(f)−RN(f)) > ε

}
= 0,∀ε > 0.
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Vapnik-Chervonenkis entropy and consistency

• For any N , S and F , let

GF(N,S) = card {(f(x1), . . . , f(xN)) : f ∈ F}

• Obviously, GF(N,S) ≤ 2N
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Vapnik-Chervonenkis entropy and consistency

• For any N , S and F , let

GF(N,S) = card {(f(x1), . . . , f(xN)) : f ∈ F}

• Obviously, GF(N,S) ≤ 2N

• Theorem: the ULLN holds if and only if:

lim
N→∞

ES∼P [lnGF(N,S)]
N

= 0.
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Distribution-independent bound

• Theorem (Vapnik-Chervonenkis): For any δ > 0, the following

holds with P -probability at least 1− δ:

∀f ∈ F , R(f) ≤ RN(f) +

√
ln supS GF(N,S) + ln 1/δ

8N
.
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Distribution-independent bound

• Theorem (Vapnik-Chervonenkis): For any δ > 0, the following

holds with P -probability at least 1− δ:

∀f ∈ F , R(f) ≤ RN(f) +

√
ln supS GF(N,S) + ln 1/δ

8N
.

• This is valid for any P !

• A sufficient condition for distribution-independent fast ULLN is:

lim
N→∞

ln supS GF(N,S)
N

= 0



20

VC dimension

• The VC dimension of F is the largest number of points that can

be shattered by F , i.e., such that there exists a set S with

GF(N,S) = 2N
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VC dimension

• The VC dimension of F is the largest number of points that can

be shattered by F , i.e., such that there exists a set S with

GF(N,S) = 2N

• Example: for hyperplanes in Rd, the VC dimension is d + 1
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Sauer lemma

Let F be a set with finite VC dimension h. Then

ln sup
S

GF(N,S)

{
= N if N ≤ h,

≤ h ln eN
h if N ≥ h

N

h
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VC dimension and learning

• Finiteness of the VC-dimension is a necessary and sufficient

condition for uniform convergence independant of P
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VC dimension and learning

• Finiteness of the VC-dimension is a necessary and sufficient

condition for uniform convergence independant of P

• If F has finite CV dimension h, then the following holds with

probability at least 1− δ:

∀f ∈ F , R(f) ≤ RN(f) +

√
h ln 2eN

h + ln 4
δ

8N
.
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Partie 2

Support vector machines
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Structural risk minimization

• Define a nested family of function sets:

F1 ⊂ F2 ⊂ . . . ⊂ YX

with increasing VC dimensions:

h1 ≤ h2 ≤ . . .

• In each class, the ERM algorithm finds a classifier f̂i that satisfies:

R(f̂i) ≤ inf
f∈Fi

RN(f) +

√
hi ln 2eN

hi
+ ln 4

δ

8N
.
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Structural risk minimization (2)

• SRM principle: choose f̂ = f̂i that minimizes the upper bound
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Structural risk minimization (2)

• SRM principle: choose f̂ = f̂i that minimizes the upper bound

• The validity of this prinple can also be justified mathematically
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Curse of dimension?

• Remember the VC dim of the class of hyperplanes in Rd is d + 1

• Can not learn in large dimension?
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Large margin hyperplanes

For a given set of points S in a ball of radius R, consider only the

hyperplanes Fγ that correctly separate the points with margin at

least γ:

γ
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Large margin hyperplanes

For a given set of points S in a ball of radius R, consider only the

hyperplanes Fγ that correctly separate the points with margin at

least γ:

γ
V C(Fγ) ≤ R2

γ2

(independent of the dimension!)
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SRM on hyperplanes

Intuitively, select an hyperplane with:

• small empirical risk

• large margin
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SRM on hyperplanes

Intuitively, select an hyperplane with:

• small empirical risk

• large margin

Support vector machines implement this principle.
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Linear SVM
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Linear SVM

H



31

Linear SVM

m

H
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Linear SVM

m e1

e2

e3

e4
e5

H
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Linear SVM

m e1

e2

e3

e4
e5

H

min
H,m

{
1

m2
+ C

∑
i

ei

}
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Dual formulation

The classification of a new point x is the sign of:

f(x) =
∑

i

αi~x.~xi + b,

where αi solves:
max~α

∑n
i=1 αi − 1

2

∑n
i,j=1 αiαjyiyj ~xi. ~xj)

∀i = 1, . . . , n 0 ≤ αi ≤ C∑n
i=1 αiyi = 0
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Sometimes linear classifiers are not interesting



36

Solution: non-linear mapping to a feature space

φ
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Example

R

Let Φ(~x) = (x2
1, x

2
2)
′, ~w = (1, 1)′ and b = 1. Then the decision

function is:

f(~x) = x2
1 + x2

2 −R2 = ~w.Φ(~x) + b,
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Kernel (simple but important)

For a given mapping Φ from the space of objects X to some feature

space, the kernel of two objects x and x′ is the inner product of their

images in the features space:

∀x, x′ ∈ X , K(x, x′) = ~Φ(x).~Φ(x′).

Example: if ~Φ(~x) = (x2
1, x

2
2)
′, then

K(~x, ~x′) = ~Φ(~x).~Φ(~x′) = (x1)2(x′1)
2 + (x2)2(x′2)

2.
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Training a SVM in the feature space

Replace each ~x.~x′ in the SVM algorithm by K(x, x′)

The dual problem is to maximize

L(~α) =
N∑

i=1

αi −
1
2

N∑
i,j=1

αiαjyiyjK(xi, xj),

under the constraints:{
0 ≤ αi ≤ C, for i = 1, . . . , N∑N

i=1 αiyi = 0.
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Predicting with a SVM in the feature space

The decision function becomes:

f(x) = ~w∗.~Φ(x) + b∗

=
N∑

i=1

αiK(xi, x) + b∗.
(1)
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The kernel trick

• The explicit computation of ~Φ(x) is not necessary. The kernel

K(x, x′) is enough. SVM work implicitly in the feature space.

• It is sometimes possible to easily compute kernels which correspond

to complex large-dimensional feature spaces.
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Kernel example

For any vector ~x = (x1, x2)′, consider the mapping:

Φ(~x) =
(
x2

1, x
2
2,
√

2x1x2,
√

2x1,
√

2x2, 1
)′

.

The associated kernel is:

K(~x, ~x′) = Φ(~x).Φ(~x′)

= (x1x
′
1 + x2x

′
2 + 1)2

= (~x.~x′ + 1)2
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Classical kernels for vectors

• Polynomial:

K(x, x′) = (x.x′ + 1)d

• Gaussian radial basis function

K(x, x′) = exp
(
||x− x′||2

2σ2

)

• Sigmoid

K(x, x′) = tanh(κx.x′ + θ)
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Example: classification with a Gaussian kernel

f(~x) =
N∑

i=1

αi exp
(
||~x− ~xi||2

2σ2

)
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Kernels

For any set X , a function K : X × X → R is a kernel iff:

• it is symetric :

K(x, y) = K(y, x),

• it is positive semi-definite:∑
i,j

aiajK(xi, xj) ≥ 0

for all ai ∈ R and xi ∈ X
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Kernel properties

• The set of kernels is a convex cone closed under the topology of

pointwise convergence

• Closed under the Schur product K1(x, y)K2(x, y)

• Bochner theorem: in Rd,

K(x, y) = φ(x− y)

is a kernel iff φ has a non-negative Fourier transform (generalization

to more general groups and semi-groups)
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Partie 3

Computational biology
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Overview

• 1990-95: DNA chips

• 2003: completion of the Human Genome Projects

• Gene sequences, structures, expression, localization, phenotypes,

SNP, ... many many data

• Pharmacy, environment, food, ... many applications
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Data examples

2D and 3D structure of prion
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Data examples

(From Spellman et al., 1998)
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Data examples
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Pattern recognition examples

• Medical diagnosis from gene expression

• Functional genomics

• Structural genomics

• Drug design

• ... SVM are being applied
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Partie 4

Virtual screening of small
molecules
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The problem

• Objects = chemical compounds (formula, structure..)

C C

C O

C

N

O

• Problem = predict their:

? drugability

? pharmacocinetics

? activity on a target etc...
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Classical approaches

• Use molecular descriptors to represent the compouds as vectors

• Select a limited numbers of relevant descriptors

• Use linear regression, NN, nearest neighbour etc...
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SVM approach

• We need a kernel K(c1, c2) between compounds



56

SVM approach
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SVM approach

• We need a kernel K(c1, c2) between compounds

• One solution: inner product between vectors

• Alternative solution: define a kernel directly using graph comparison

tools
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Example: graph kernel (Kashima et al., 2003)

C C

C O

C

N
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Example: graph kernel (Kashima et al., 2003)

C C

C O

C

N

O

O C C C O

Extract random paths



59

Example: graph kernel (Kashima et al., 2003)

C C C C NC

C C

C O

C

N

O

O C C C O

Extract random paths
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Example: graph kernel (Kashima et al., 2003)

• Let H1 be a random path of a compound c1

• Let H2 be a random path of a compound c2

• The following is a valid kernel:

K(c1, c2) = Prob(H1 = H2).
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Remarks

• The feature space is infinite-dimensional (all possible paths)
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Remarks

• The feature space is infinite-dimensional (all possible paths)

• The kernel can be computed efficiently

• Two compounds are compared in terms of their common

substructures

• What about kernels for the 3D structure?
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Conclusion
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Conclusion

• Important developments of statistical learning theory recently

• Involve several fields: probability/statistics, functional analysis,

optimization, harmonic analysis on semigroups, differential

geometry...

• Results in useful state-of-the-art algorithms in many fields

• Computational biology directly benefits from these developments...

but it’s only the begining


