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Overview

1. Support Vector Machines and kernel methods

2. Application: Protein remote homology detection

3. Application: Extracting pathway activity from gene expression data
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Part 1

Support Vector Machines (SVM)
and

Kernel Methods
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The pattern recognition problem
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The pattern recognition problem

• Learn from labelled examples a discrimination rule
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The pattern recognition problem

• Learn from labelled examples a discrimination rule

• Use it to predict the class of new points
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Pattern recognition examples

• Medical diagnosis (e.g., from microarrays)

• Drugability/activity of chemical compouds

• Gene function, structure, localization

• Protein interactions
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Support Vector Machines for pattern recognition

φ

• Object x represented by the vector ~Φ(x) (feature space)
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Support Vector Machines for pattern recognition

φ

• Object x represented by the vector ~Φ(x) (feature space)

• Linear separation in the feature space
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Support Vector Machines for pattern recognition

φ

• Object x represented by the vector ~Φ(x) (feature space)

• Linear separation with large margin in the feature space
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Large margin separation
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Large margin separation
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Large margin separation
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Large margin separation
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Large margin separation
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Dual formulation

The classification of a new point x is the sign of:

f(x) =
∑

i

αiK(x, xi) + b,

where αi solves:
max~α

∑n
i=1 αi − 1

2

∑n
i,j=1 αiαjyiyjK(xi, xj)

∀i = 1, . . . , n 0 ≤ αi ≤ C∑n
i=1 αiyi = 0

with the notation:

K(x, x′) = ~Φ(x). ~Φ(x′)
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The kernel trick for SVM

• The separation can be found without knowing Φ(x). Only the

kernel matters:

K(x, y) = ~Φ(x). ~Φ(y)

• Simple kernels K(x, y) can correspond to complex ~Φ

• SVM work with any sort of data as soon as a kernel is defined
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Kernel examples

• Linear :

K(x, x′) = x.x′

• Polynomial :

K(x, x′) = (x.x′ + c)d

• Gaussian RBf :

K(x, x′) = exp
(
−||x− x′||2

2σ2

)
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Kernels

For any set X , a function K : X × X → R is a kernel iff:

• it is symmetric :

K(x, y) = K(y, x),

• it is positive semi-definite:∑
i,j

aiajK(xi, xj) ≥ 0

for all ai ∈ R and xi ∈ X
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Advantages of SVM

• Works well on real-world applications

• Large dimensions, noise OK (?)

• Can be applied to any kind of data as soon as a kernel is available
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Examples: SVM in bioinformatics

• Gene functional classification from microarry: Brown et al. (2000),

Pavlidis et al. (2001)

• Tissue classification from microarray: Mukherje et al. (1999),

Furey et al. (2000), Guyon et al. (2001)

• Protein family prediction from sequence: Jaakkoola et al. (1998)

• Protein secondary structure prediction: Hua et al. (2001)

• Protein subcellular localization prediction from sequence: Hua et

al. (2001)
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Kernel methods

Let K(x, y) be a given kernel. Then is it possible to perform other

linear algorithms implicitly in the feature space such as:

• Compute the distance between points

• Principal component analysis (PCA)

• Canonical correlation analysis (CCA)
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Compute the distance between objects

g2φ(    )
0

φ(    )g1 d

d(g1, g2)2 = ‖~Φ(g1)− ~Φ(g2)‖2

=
(
~Φ(g1)− ~Φ(g2)

)
.
(
~Φ(g1)− ~Φ(g2)

)
= ~Φ(g1).~Φ(g1) + ~Φ(g2).~Φ(g2)− 2~Φ(g1).~Φ(g2)

d(g1, g2)2= K(g1, g1) + K(g2, g2)− 2K(g1, g2)
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Distance to the center of mass

m

φ(    )g1

Center of mass: ~m = 1
N

∑N
i=1

~Φ(gi), hence:

‖~Φ(g1)− ~m‖2 = ~Φ(g1).~Φ(g1)− 2~Φ(g1).~m + ~m.~m

= K(g1, g1)−
2
N

N∑
i=1

K(g1, gi) +
1

N2

N∑
i,j=1

K(gi, gj)
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Principal component analysis

PC1PC2

It is equivalent to find the eigenvectors of

K =
(
~Φ(gi).~Φ(gj)

)
i,j=1...N

=
(
K(gi, gj)

)
i,j=1...N

Useful to project the objects on small-dimensional spaces (feature

extraction).
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Canonical correlation analysis

CCA2

CCA1

CCA1

CCA2

K1 and K2 are two kernels for the same objects. CCA can be

performed by solving the following generalized eigenvalue problem:(
0 K1K2

K2K1 0

)
~ξ = ρ

(
K2

1 0
0 K2

2

)
~ξ

Useful to find correlations between different representations of the

same objects (ex: genes, ...)
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Part 2

Local alignment kernel for strings
(with S. Hiroto, N. Ueda, T. Akutsu, Bioinformatics, 2004)
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Motivations

• Develop a kernel for strings adapted to protein / DNA sequences

• Several methods have been adopted in bioinformatics to measure

the similarity between sequences... but are not valid kernels

• How to mimic them?
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Related work

• Spectrum kernel (Leslie et al.):

K(x1 . . . xm, y1 . . . yn) =
m−k∑
i=1

n−k∑
j=1

δ(xi . . . xi+k, yj . . . yj+k).
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Related work

• Spectrum kernel (Leslie et al.):

K(x1 . . . xm, y1 . . . yn) =
m−k∑
i=1

n−k∑
j=1

δ(xi . . . xi+k, yj . . . yj+k).

• Fisher kernel (Jaakkola et al.): given a statistical model(
pθ, θ ∈ Θ ⊂ Rd

)
:

φ(x) = ∇θ log pθ(x)
and use the Fisher information matrix.
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Local alignment

• For two strings x and y, a local alignment π with gaps is:

ABCD EF−−−G−HI JKL

MNO TUVWXEEPQRGS−I

• The score is:

s(x, y, π) = s(E,E) + s(F, F ) + s(G, G) + s(I, I)− s(gaps)
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Smith-Waterman (SW) score

SW (x, y) = max
π∈Π(x,y)

s(x, y, π)

• Computed by dynamic programming

• Not a kernel in general
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Convolution kernels (Haussler 99)

• Let K1 and K2 be two kernels for strings

• Their convolution is the following valid kernel:

K1 ? K2(x, y) =
∑

x1x2=x,y1y2=y

K1(x1, y1)K2(x2, y2)
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3 basic kernels

• For the unaligned parts: K0(x, y) = 1.
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3 basic kernels

• For the unaligned parts: K0(x, y) = 1.

• For aligned residues:

K(β)
a (x, y) =

{
0 if |x| 6= 1 or |y| 6= 1,

exp (βs(x, y)) otherwise
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3 basic kernels

• For the unaligned parts: K0(x, y) = 1.

• For aligned residues:

K(β)
a (x, y) =

{
0 if |x| 6= 1 or |y| 6= 1,

exp (βs(x, y)) otherwise

• For gaps:

K(β)
g (x, y) = exp [β (g(|x|) + g(|y|))]
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Combining the kernels

• Detecting local alignments of exactly n residues:

K
(β)
(n)(x, y) = K0 ?

(
K(β)

a ? K(β)
g

)(n−1)

? K(β)
a ? K0.
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Combining the kernels

• Detecting local alignments of exactly n residues:

K
(β)
(n)(x, y) = K0 ?

(
K(β)

a ? K(β)
g

)(n−1)

? K(β)
a ? K0.

• Considering all possible local alignments:

K
(β)
LA =

∞∑
i=0

K
(β)
(i) .



35

Properties

K
(β)
LA(x, y) =

∑
π∈Π(x,y)

exp (βs(x, y, π)) ,
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Properties

K
(β)
LA(x, y) =

∑
π∈Π(x,y)

exp (βs(x, y, π)) ,

lim
β→+∞

1
β

lnK
(β)
LA(x, y) = SW (x, y).
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Kernel computation
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Application: remote homology detection
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• Same structure/function but sequence diverged

• Remote homology can not be found by direct sequence similarity
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SCOP database

Fold

Superfamily

Family

SCOP

Close homologsRemote homologs
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A benchmark experiment

• Can we predict the superfamily of a domain if we have not seen

any member of its family before?
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A benchmark experiment

• Can we predict the superfamily of a domain if we have not seen

any member of its family before?

• During learning: remove a family and learn the difference between

the superfamily and the rest
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A benchmark experiment

• Can we predict the superfamily of a domain if we have not seen

any member of its family before?

• During learning: remove a family and learn the difference between

the superfamily and the rest

• Then, use the model to test each domain of the family removed
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SCOP superfamily recognition benchmark
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Part 3

Detecting pathway activity from
microarray data

(with M. Kanehisa, ECCB 2003)
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Genes encode proteins which can catalyse chemical
reations

Nicotinamide Mononucleotide Adenylyltransferase With Bound Nad+
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Chemical reactions are often parts of pathways

From http://www.genome.ad.jp/kegg/pathway



44

Microarray technology monitors mRNA quantity

(From Spellman et al., 1998)
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Comparing gene expression and pathway databases

VS

Detect active pathways? Denoise expression data?

Denoise pathway database? Find new pathways?

Are there “correlations”?
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A useful first step

and

g6

g3
g8

g7
g5
g4

g1

g2

g1

g5
g6

g7
g3
g4

g8

g2



47

Using microarray only

PC1

g1

g5
g6

g7
g3
g4

g8

g2

PCA finds the directions (profiles) explaining the largest amount of

variations among expression profiles.
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PCA formulation

• Let fv(i) be the projection of the i-th profile onto v.

• The amount of variation captured by fv is:

h1(v) =
N∑

i=1

fv(i)2

• PCA finds an orthonormal basis by solving successively:

max
v

h1(v)
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Issues with PCA

• PCA is useful if there is a small number of strong signal

• In concrete applications, we observe a noisy superposition of many

events

• Using a prior knowledge of metabolic networks can help denoising

the information detected by PCA
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The metabolic gene network

Glucose−6P

Glucose

Glucose−1P

Fructose−6P Fructose−1,6P2

GAL10 HKA2

GLK1

HKA1 PGM1

PGM2

PGT1 FBP1

PFK1

PFK2

FBA1

GAL10

PGM1, PGM2

PGT1

FBP1

PFK1,PFK2
HKA, HKB, GLK1

FBA1

Link two genes when they can catalyze two successive reactions
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Mapping fv to the metabolic gene network
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Important hypothesis

If v is related to a metabolic activity, then fv should vary

”smoothly” on the graph

Smooth Rugged
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Graph Laplacian L = D −A

1

2

3

4

5

L =


−1 0 1 0 0
0 −1 1 0 0
1 1 −3 1 0
0 0 1 −2 1
0 0 0 1 −1
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Smoothness quantification

h2(f) =
f> exp(−βL)f

f>f
is large when f is smooth

h(f) = 2.5 h(f) = 34.2
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Motivation

For a candidate profile v,

• h1(fv) is large when v captures a lot of natural variation among

profiles

• h2(fv) is large when fv is smooth on the graph

Try to maximize both terms in the same time
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Problem reformulation

Find a function fv and a function f2 such that:

• h1(fv) be large

• h2(f2) be large

• corr(fv, f2) be large

by solving:

max
(fv,f2)

corr(fv, f2)×
h1(fv)

h1(fv) + δ
× h2(f2)

h2(f2) + δ
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Solving the problem

This formultation is equivalent to a generalized form of CCA

(Kernel-CCA, Bach and Jordan, 2002), which is solved by the

following generalized eigenvector problem(
0 K1K2

K2K1 0

) (
α

β

)
= ρ

(
K2

1 + δK1 0
0 K2

2 + δK2

) (
α

β

)
where [K1]i,j = e>i ej and K2 = exp(−L).

Then, fv = K1α and f2 = K2β.
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The kernel point of view...
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Data

• Gene network: two genes are linked if the catalyze successive

reactions in the KEGG database (669 yeast genes)

• Expression profiles: 18 time series measures for the 6,000 genes of

yeast, during two cell cycles
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First pattern of expression
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Related metabolic pathways

50 genes with highest s2 − s1 belong to:

• Oxidative phosphorylation (10 genes)

• Citrate cycle (7)

• Purine metabolism (6)

• Glycerolipid metabolism (6)

• Sulfur metabolism (5)

• Selenoaminoacid metabolism (4) , etc...
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Related genes
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Related genes
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Related genes
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Opposite pattern
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Related genes

• RNA polymerase (11 genes)

• Pyrimidine metabolism (10)

• Aminoacyl-tRNA biosynthesis (7)

• Urea cycle and metabolism of amino groups (3)

• Oxidative phosphorlation (3)

• ATP synthesis(3) , etc...
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Related genes
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Related genes
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Related genes
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Second pattern
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Extensions

• Can be used to extract features from expression profiles (preprint

2002)

• Can be generalized to more than 2 datasets and other kernels

• Can be used to extract clusters of genes (e.g., operon detection,

ISMB 03 with Y. Yamanishi, A. Nakaya and M. Kanehisa)
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Conclusion
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Conclusion

• Kernels offer a versatile framework to represent biological data

• SVM and kernel methods work well on real-life problems, in

particular in high dimension and with noise

• Encouraging results on real-world applications

• Many opportunities in developping kernels for particular applications


