Inference on Graphs with Support Vector Machines

Jean-Philippe Vert

Ecole des Mines de Paris, France Jean-Philippe.Vert@mines.org

INSEAD, Feb. 6, 2004

Outline

1. Introduction to SVMs
2. Inference on graphs

Part 1

Support Vector Machines (SVMs)

The pattern recognition problem

The pattern recognition problem

- Learn from labelled examples a discrimination rule

The pattern recognition problem

- Learn from labelled examples a discrimination rule
- Use it to predict the class of new points

Pattern recognition examples

- Hand-written digit recognition
- Medical diagnosis
- Direct marketing
- Predicting the future...

Remark: other problems are possible: multi-class, continuous values, etc...

Linear SVM

Dual formulation

The classification of a new point x is the sign of:

$$
f(x)=w \cdot x+b=\left(\sum_{i} \alpha_{i} x_{i}\right) \cdot x+b
$$

where α_{i} solves:

$$
\left\{\begin{array}{l}
\max _{\vec{\alpha}} \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i} . x_{j} \\
\forall i=1, \ldots, n \quad 0 \leq \alpha_{i} \leq C \\
\sum_{i=1}^{n} \alpha_{i} y_{i}=0 .
\end{array}\right.
$$

General Support Vector Machines

- Object x represented by the vector $\Phi \overrightarrow{(x)}$ (feature space)

General Support Vector Machines

- Object x represented by the vector $\Phi \overrightarrow{(x)}$ (feature space)
- Linear SVM in the feature space

General Support Vector Machines

- Object x represented by the vector $\Phi \overrightarrow{(x)}$ (feature space)
- Linear SVM in the feature space

Dual formulation

The classification of a new point x is the sign of:

$$
f(x)=w \cdot \Phi \overrightarrow{(x)}+b=\left(\sum_{i} \alpha_{i} \Phi \overrightarrow{\left(x_{i}\right)}\right) \cdot \Phi \overrightarrow{(x)}+b,
$$

where α_{i} solves:

$$
\left\{\begin{array}{l}
\max _{\vec{\alpha}} \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \Phi\left(\vec{x}_{i}\right)_{i} \cdot \Phi\left(\vec{x}_{j}\right) \\
\forall i=1, \ldots, n \quad 0 \leq \alpha_{i} \leq C \\
\sum_{i=1}^{n} \alpha_{i} y_{i}=0 .
\end{array}\right.
$$

A useful trick

Let

$$
K(x, y):=\Phi \overrightarrow{(x)} \cdot \Phi \overrightarrow{(y)}
$$

K is called a kernel.

Dual formulation using the kernel

The classification of a new point x is the sign of:

$$
f(x)=w \cdot \Phi \overrightarrow{(x)}+b=\sum_{i} \alpha_{i} K\left(x_{i}, x\right)+b,
$$

where α_{i} solves:

$$
\left\{\begin{array}{l}
\max _{\vec{\alpha}} \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(x_{i}, x_{j}\right) \\
\forall i=1, \ldots, n \quad 0 \leq \alpha_{i} \leq C \\
\sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{array}\right.
$$

The kernel trick for SVM

- The separation can be found without computing $\Phi(x)$ explicitly. Only the kernel matters:

$$
K(x, y)=\Phi \overrightarrow{(x)} \cdot \Phi \overrightarrow{(y)}
$$

- Simple kernels $K(x, y)$ can correspond to complex $\vec{\Phi}$
- SVM work with any sort of data as soon as a kernel is defined

Kernel examples

- Linear :

$$
K\left(x, x^{\prime}\right)=x \cdot x^{\prime}
$$

- Polynomial :

$$
K\left(x, x^{\prime}\right)=\left(x \cdot x^{\prime}+c\right)^{d}
$$

- Gaussian RBf :

$$
K\left(x, x^{\prime}\right)=\exp \left(-\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)
$$

Kernels

For any set \mathcal{X}, a function $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a kernel iff:

- it is symmetric :

$$
K(x, y)=K(y, x)
$$

- it is positive semi-definite:

$$
\sum_{i, j} a_{i} a_{j} K\left(x_{i}, x_{j}\right) \geq 0
$$

for all $a_{i} \in \mathbb{R}$ and $x_{i} \in \mathcal{X}$

Advantages of SVM

- Works well on real-world applications
- Large dimensions, noise OK (?)
- Can be applied to any kind of data as soon as a kernel is available

Part 2

Inference on Graphs

Motivations

Data to be analyzed are often not vectors, but rather nodes of a network

- by nature,
- by discretization/sampling of a continuous space
- because it's convenient.

Internet (by nature)

Social Network (by nature)

Protein interaction network (by nature)

Spatial data (by discretization)

Molecules (by convenience)

SVM on a graph

We need a kernel $K(x, y)$ between nodes.

Using a distance?

- Remember the Gaussian kernel

$$
K(x, y)=\exp \left(-\frac{\|x-y\|^{2}}{2 \sigma^{2}}\right)
$$

- Let $d\left(x, x^{\prime}\right)$ a distance on the graph, e.g., the length of the shortext path between nodes.
- Soit $K\left(x, x^{\prime}\right)=\exp \left(-d\left(x, x^{\prime}\right)^{2} / 2 \sigma^{2}\right)$
- Problem: not a valid kernel...

Using the heat equation?

Let $K_{x}(t, y)$ the temperature at time t and position y. K_{x} solves the heat equation:

$$
\frac{\partial K_{x}}{\partial t}=\Delta K_{x}
$$

The solution is the Gaussian kernel:

$$
K_{x}(t, y)=\frac{1}{\sqrt{4 \pi}} \exp \left(-\frac{\|x-y\|^{2}}{4 t}\right)
$$

(interpretation: describes how heat, gas, introduced at x, diffuse over time)

The Laplacian

- For vectors,

$$
\Delta=\sum_{i=1}^{p} \frac{\partial}{\partial x_{i}} .
$$

- On a graph: for any function f on the graph, Δf is the function defined by:

$$
\Delta f(x)=\sum_{x^{\prime} \sim x}\left(f\left(x^{\prime}\right)-f(x)\right)
$$

Example

$$
\Delta=\left(\begin{array}{ccccc}
-1 & 0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
1 & 1 & -3 & 1 & 0 \\
0 & 0 & 1 & -2 & 1 \\
0 & 0 & 0 & 1 & -1
\end{array}\right)
$$

Heat equation on a graph

- The heat equation is the same:

$$
\frac{\partial K_{x}}{\partial t}=\Delta K_{x}
$$

- The solution is the heat kernel:

$$
K(t)=\exp (t \Delta)
$$

$\left(\right.$ Remember $\left.e^{A}=I d+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\ldots\right)$

Heat kernel example

$$
K=\exp (\Delta)=\left(\begin{array}{lllll}
0.49 & 0.12 & 0.23 & 0.10 & 0.03 \\
0.12 & 0.49 & 0.23 & 0.10 & 0.03 \\
0.23 & 0.23 & 0.24 & 0.17 & 0.10 \\
0.10 & 0.10 & 0.17 & 0.31 & 0.30 \\
0.03 & 0.03 & 0.10 & 0.30 & 0.52
\end{array}\right)
$$

Interpretation

$$
K_{t}(x, y)=\left[e^{t \Delta}\right]_{x, y} .
$$

- a discrete version of the Gaussian
- is related to diffusions on the graph
- increases when there are many short paths between x and y

Inference on graphs

Inference on graphs

Example: protein function prediction

Example: protein function prediction

Conclusion

Conclusion

- SVM and kernel methods are powerful machine learning tools
- The kernel trick enables the use of SVM for nonvectorial data
- SVM on graph is possible and leads to good experimental results
- Applications in marketing?

