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Outline

1. Introduction to SVMs

2. Inference on graphs
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Part 1

Support Vector Machines
(SVMs)
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The pattern recognition problem
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The pattern recognition problem

• Learn from labelled examples a discrimination rule
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The pattern recognition problem

• Learn from labelled examples a discrimination rule

• Use it to predict the class of new points
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Pattern recognition examples

• Hand-written digit recognition

• Medical diagnosis

• Direct marketing

• Predicting the future...

Remark: other problems are possible: multi-class, continuous values,

etc...
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Linear SVM
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H



10

Linear SVM

m

H



11

Linear SVM

m e1

e2

e3

e4
e5

H



12

Linear SVM

m e1

e2

e3

e4
e5

H

min
H

{
min

m

[
1

m2
+ C

∑
i

ei

]}



13

Dual formulation

The classification of a new point x is the sign of:

f(x) = w.x + b =

(∑
i

αixi

)
.x + b,

where αi solves:
max~α

∑n
i=1 αi − 1

2

∑n
i,j=1 αiαjyiyjxi.xj

∀i = 1, . . . , n 0 ≤ αi ≤ C∑n
i=1 αiyi = 0.
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General Support Vector Machines

φ

• Object x represented by the vector ~Φ(x) (feature space)
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General Support Vector Machines

φ

• Object x represented by the vector ~Φ(x) (feature space)

• Linear SVM in the feature space
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Dual formulation

The classification of a new point x is the sign of:

f(x) = w. ~Φ(x) + b =

(∑
i

αi
~Φ(xi)

)
. ~Φ(x) + b,

where αi solves:
max~α

∑n
i=1 αi − 1

2

∑n
i,j=1 αiαjyiyj

~Φ(xi)i.
~Φ(xj)

∀i = 1, . . . , n 0 ≤ αi ≤ C∑n
i=1 αiyi = 0.
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A useful trick

Let

K(x, y) := ~Φ(x). ~Φ(y)

K is called a kernel.
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Dual formulation using the kernel

The classification of a new point x is the sign of:

f(x) = w. ~Φ(x) + b =
∑

i

αiK(xi, x) + b,

where αi solves:
max~α

∑n
i=1 αi − 1

2

∑n
i,j=1 αiαjyiyjK(xi, xj)

∀i = 1, . . . , n 0 ≤ αi ≤ C∑n
i=1 αiyi = 0.
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The kernel trick for SVM

• The separation can be found without computing Φ(x) explicitly.

Only the kernel matters:

K(x, y) = ~Φ(x). ~Φ(y)

• Simple kernels K(x, y) can correspond to complex ~Φ

• SVM work with any sort of data as soon as a kernel is defined
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Kernel examples

• Linear :

K(x, x′) = x.x′

• Polynomial :

K(x, x′) = (x.x′ + c)d

• Gaussian RBf :

K(x, x′) = exp
(
−||x− x′||2

2σ2

)
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Kernels

For any set X , a function K : X × X → R is a kernel iff:

• it is symmetric :

K(x, y) = K(y, x),

• it is positive semi-definite:∑
i,j

aiajK(xi, xj) ≥ 0

for all ai ∈ R and xi ∈ X
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Advantages of SVM

• Works well on real-world applications

• Large dimensions, noise OK (?)

• Can be applied to any kind of data as soon as a kernel is available
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Part 2

Inference on Graphs
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Motivations

Data to be analyzed are often not vectors, but rather nodes of a

network

• by nature,

• by discretization/sampling of a continuous space

• because it’s convenient.
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Internet (by nature)
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Social Network (by nature)
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Protein interaction network (by nature)
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Spatial data (by discretization)
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Molecules (by convenience)
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SVM on a graph

φ

We need a kernel K(x, y) between nodes.
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Using a distance?

• Remember the Gaussian kernel

K(x, y) = exp
(
−||x− y||2

2σ2

)

• Let d(x, x′) a distance on the graph, e.g., the length of the shortext

path between nodes.

• Soit K(x, x′) = exp(−d(x, x′)2/2σ2)

• Problem: not a valid kernel...
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Using the heat equation?

Let Kx(t, y) the temperature at time t and position y. Kx solves

the heat equation:
∂Kx

∂t
= ∆Kx.

The solution is the Gaussian kernel:

Kx(t, y) =
1√
4π

exp
(
−||x− y||2

4t

)
(interpretation: describes how heat, gas, introduced at x, diffuse

over time)
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The Laplacian

• For vectors,

∆ =
p∑

i=1

∂

∂xi
.

• On a graph: for any function f on the graph, ∆f is the function

defined by:

∆f(x) =
∑
x′∼x

(f(x′)− f(x))
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Example

1

2

3

4

5

∆ =


−1 0 1 0 0
0 −1 1 0 0
1 1 −3 1 0
0 0 1 −2 1
0 0 0 1 −1
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Heat equation on a graph

• The heat equation is the same:

∂Kx

∂t
= ∆Kx.

• The solution is the heat kernel:

K(t) = exp(t∆)

(Remember eA = Id + A + A2

2! + A3

3! + . . .)
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Heat kernel example

1

2

3

4

5

K = exp(∆) =


0.49 0.12 0.23 0.10 0.03
0.12 0.49 0.23 0.10 0.03
0.23 0.23 0.24 0.17 0.10
0.10 0.10 0.17 0.31 0.30
0.03 0.03 0.10 0.30 0.52
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Interpretation

Kt(x, y) =
[
et∆
]
x,y

.

• a discrete version of the Gaussian

• is related to diffusions on the graph

• increases when there are many short paths between x and y
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Inference on graphs
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Inference on graphs
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Example: protein function prediction
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Example: protein function prediction

Performance

Kernel width0 2 4 6
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Conclusion
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Conclusion

• SVM and kernel methods are powerful machine learning tools

• The kernel trick enables the use of SVM for nonvectorial data

• SVM on graph is possible and leads to good experimental results

• Applications in marketing?


