Extracting pathway activity from gene expression data

Jean-Philippe.Vert@mines.org

Ecole des Mines de Paris Computational Biology group

Max-Planck-Institut fr Informatik, Saarbrcken, Germany, Feb 18, 2004.

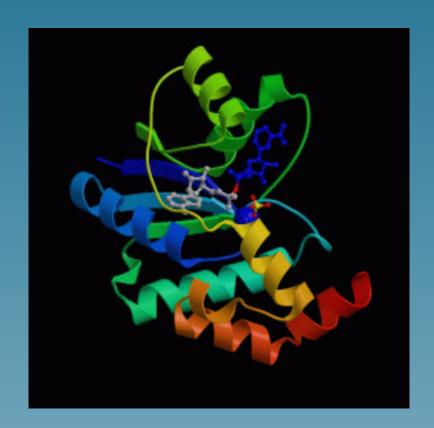
Overview

- 1. Problem formulation
- 2. Using expression data only
- 3. Using a pathway database
- 4. Combining expression and pathways
- 5. Experiments

Part 1

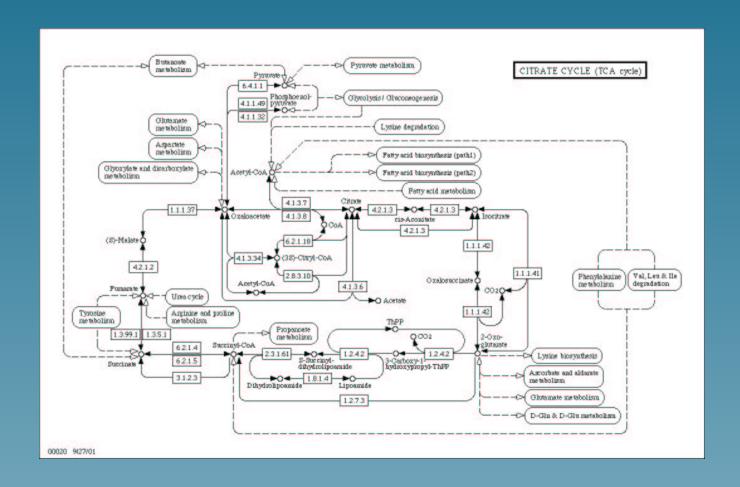
Problem formulation

Genes encode proteins which can catalyse chemical reations



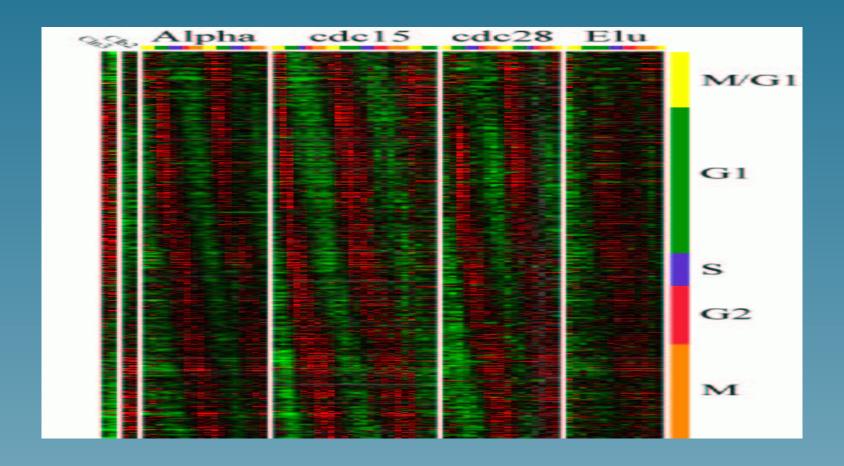
Nicotinamide Mononucleotide Adenylyltransferase With Bound Nad+

Chemical reactions are often parts of pathways



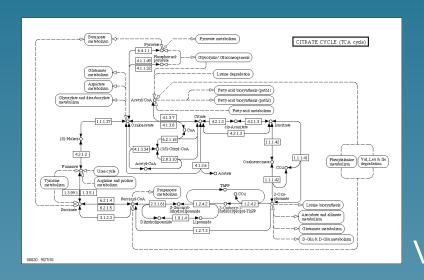
From http://www.genome.ad.jp/kegg/pathway

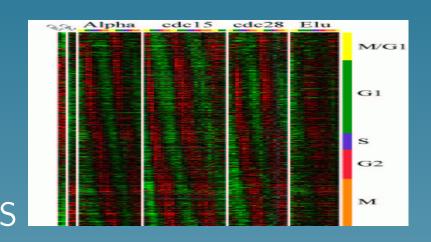
Microarray technology monitors mRNA quantity



(From Spellman et al., 1998)

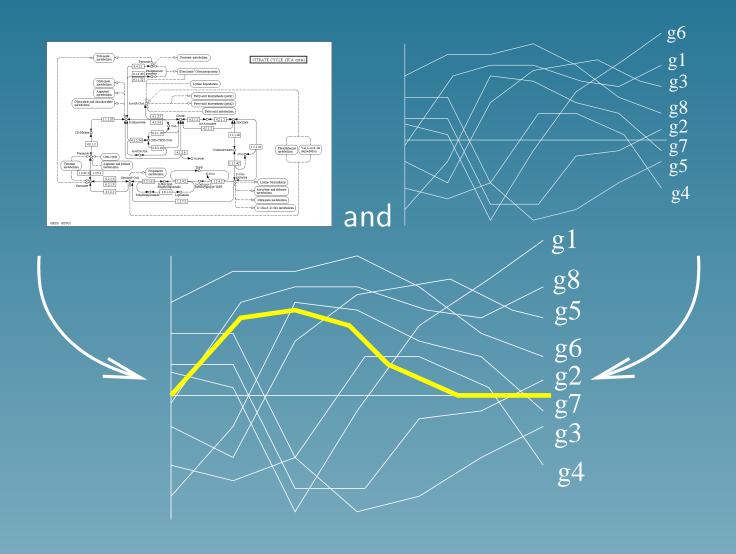
Comparing gene expression and pathway databases





Detect active pathways? Denoise expression data? Denoise pathway database? Find new pathways? Are there "correlations"?

A useful first step



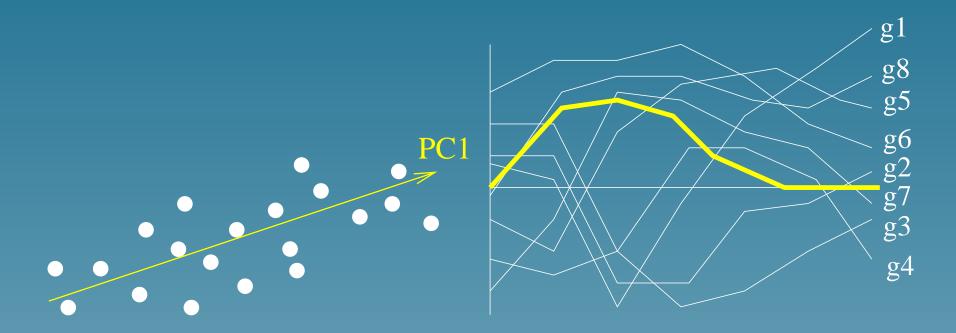
Part 2

Using expression data only

Motivation

- Pathways and biological events involve the coordinated action of several genes
- Co-regulation is an important way to coordinate the action of several genes
- Systematic variations in the set of gene expression profiles might be an indicator of an underlying biological phenomenon

Using microarray only



PCA finds the directions (*profiles*) explaining the largest amount of variations among expression profiles.

PCA formulation

- Let $f_v(i)$ be the projection of the *i*-th profile onto v.
- The amount of variation captured by f_v is:

$$h_1(v) = \sum_{i=1}^{N} f_v(i)^2$$

PCA finds an orthonormal basis by solving successively:

$$\max_{v} h_1(v)$$

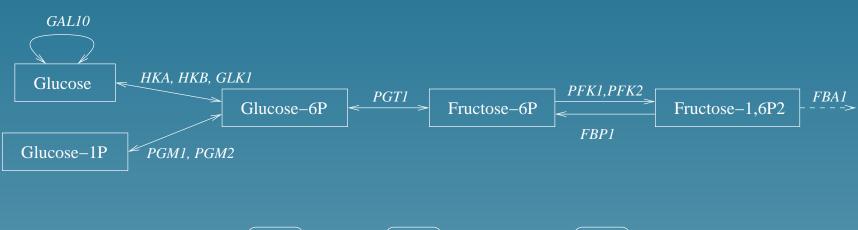
Part 3

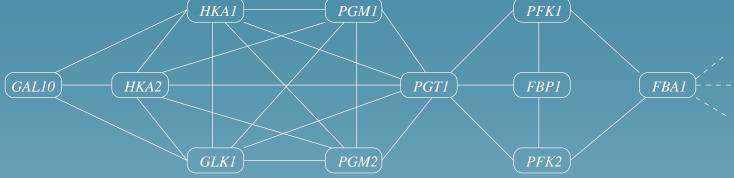
Using the metabolic database

Motivation

- PCA is useful if there is a small number of strong signal
- In concrete applications, we observe a noisy superposition of many events
- Using a prior knowledge of metabolic networks can help denoising the information detected by PCA

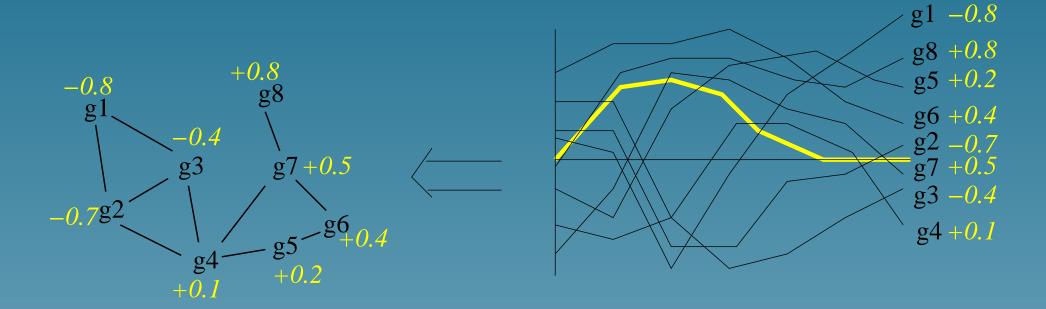
The metabolic gene network





Link two genes when they can catalyze two successive reactions

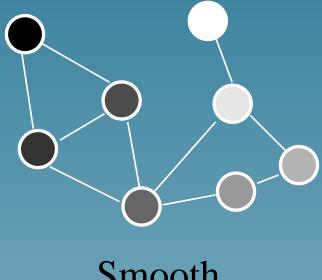
Mapping f_v to the metabolic gene network



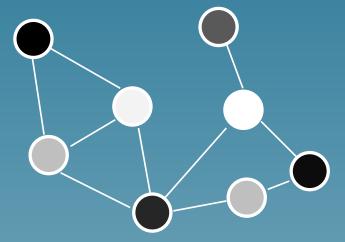
Does it look interesting or not?

Important hypothesis

If v is related to a metabolic activity, then f_v should vary "smoothly" on the graph

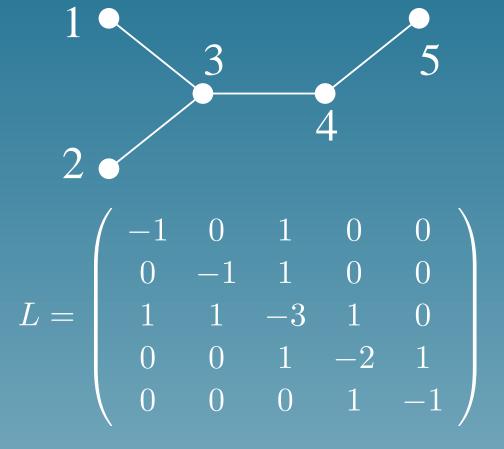


Smooth



Rugged

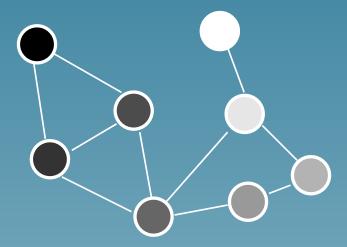
Graph Laplacian L = D - A



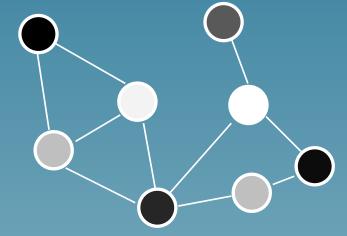
Smoothness quantification

$$h_2(f) = \frac{f^{\top} f}{f^{\top} \exp(-\beta L) f}$$

is large when f is smooth



$$h2(f) = 4$$



$$h2(f) = 0.3$$

Part 3

Combining expression and metabolic pathways

Motivation

For a candidate profile v,

- $h_1(f_v)$ is large when v captures a lot of natural variation among profiles
- ullet $h_2(f_v)$ is large when f_v is smooth on the graph

Try to maximize both terms in the same time

Problem reformulation

Find a function f_v and a function f_2 such that:

- $h_1(f_v)$ be large
- ullet $h_2(f_2)$ be large
- $corr(f_v, f_2)$ be large

by solving:

$$\max_{(f_v, f_2)} corr(f_v, f_2) \times \frac{h_1(f_v)}{h_1(f_v) + \delta} \times \frac{h_2(f_2)}{h_2(f_2) + \delta}$$

Solving the problem

This formultation is equivalent to a generalized form of CCA (Kernel-CCA, Bach and Jordan, 2002), which is solved by the following generalized eigenvector problem

$$\begin{pmatrix} 0 & K_1 K_2 \\ K_2 K_1 & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \rho \begin{pmatrix} K_1^2 + \delta K_1 & 0 \\ 0 & K_2^2 + \delta K_2 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

where $[K_1]_{i,j} = e_i^{\top} e_j$ and $K_2 = \exp(-L)$. Then, $f_v = K_1 \alpha$ and $f_2 = K_2 \beta$.

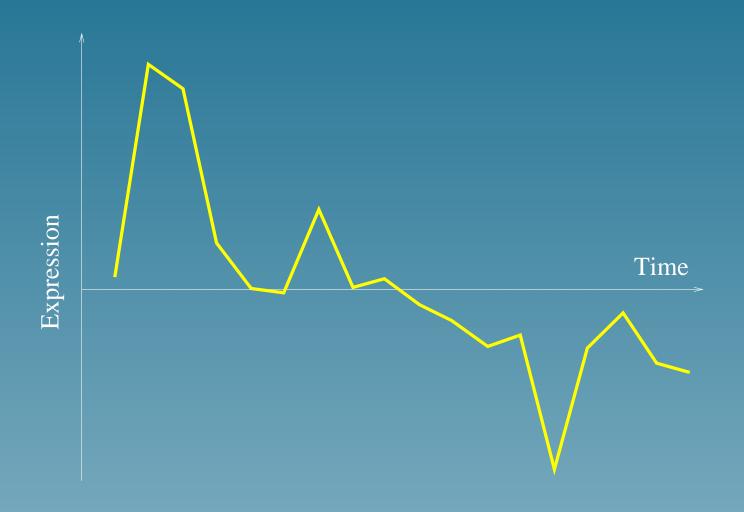
Part 4

Experimental results

Data

- Gene network: two genes are linked if the catalyze successive reactions in the KEGG database (669 yeast genes)
- Expression profiles: 18 time series measures for the 6,000 genes of yeast, during two cell cycles

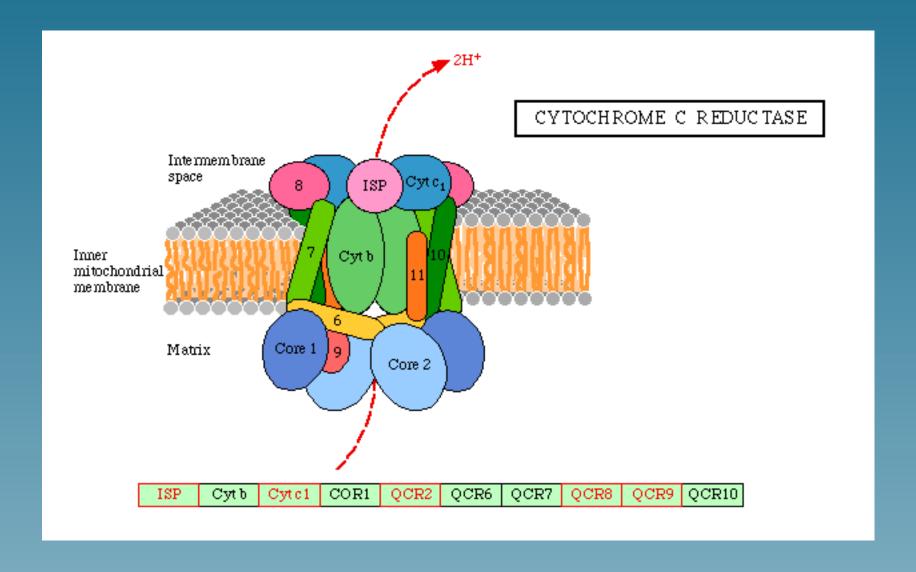
First pattern of expression

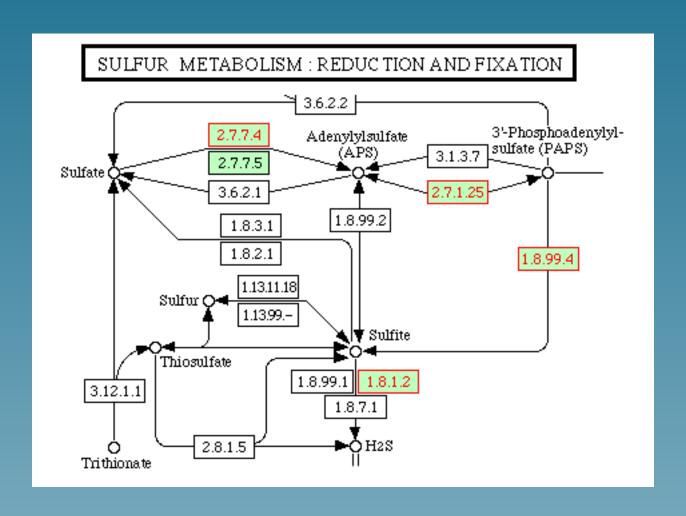


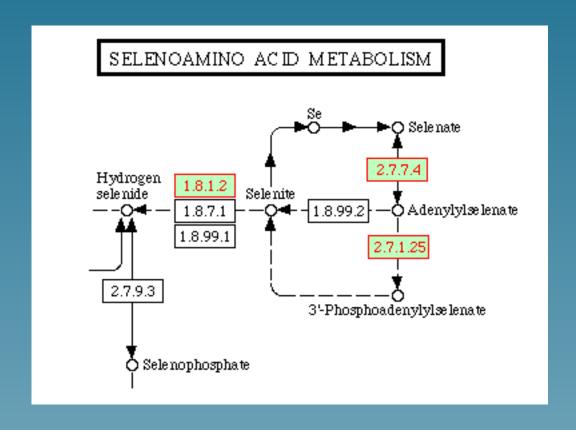
Related metabolic pathways

50 genes with highest $s_2 - s_1$ belong to:

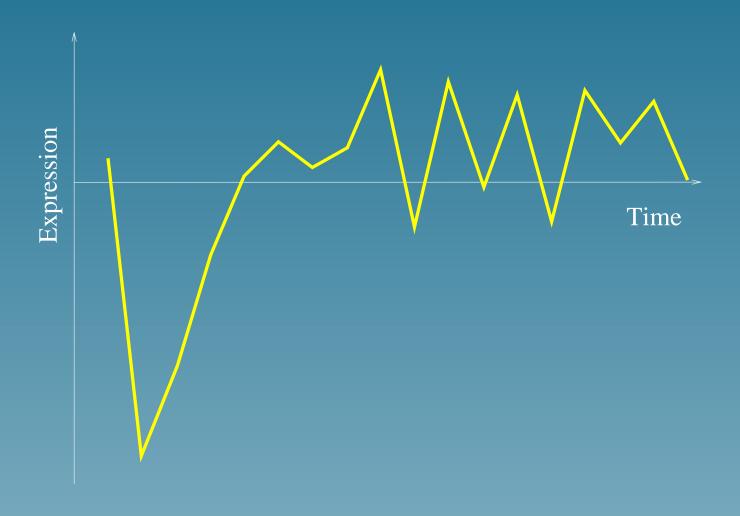
- Oxidative phosphorylation (10 genes)
- Citrate cycle (7)
- Purine metabolism (6)
- Glycerolipid metabolism (6)
- Sulfur metabolism (5)
- Selenoaminoacid metabolism (4), etc...



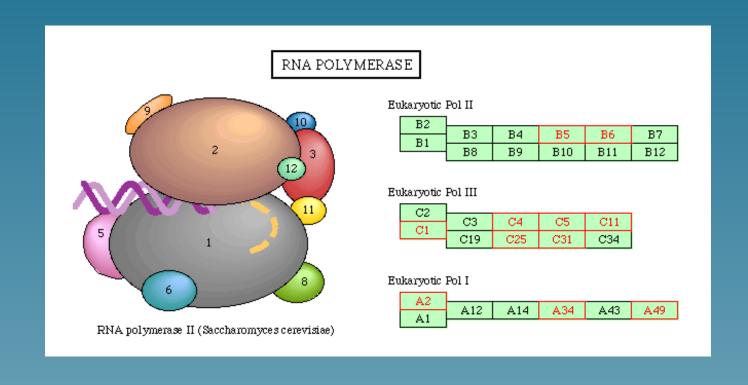


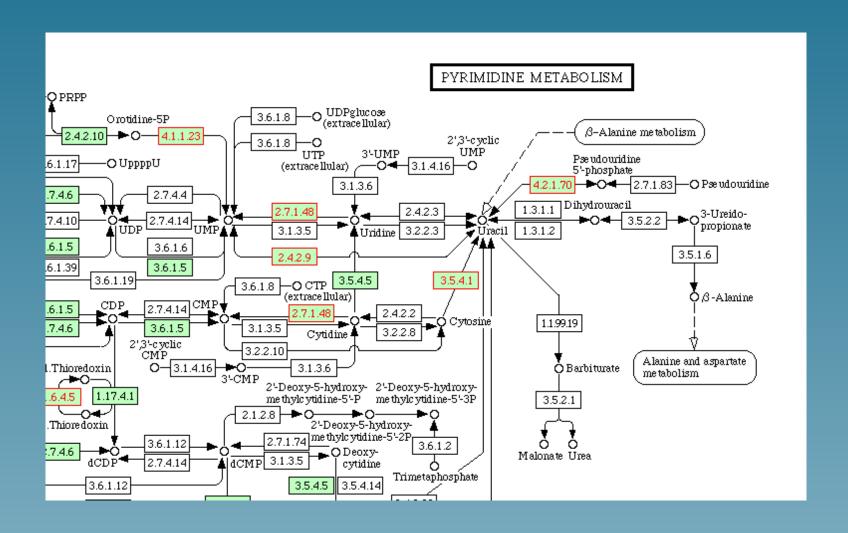


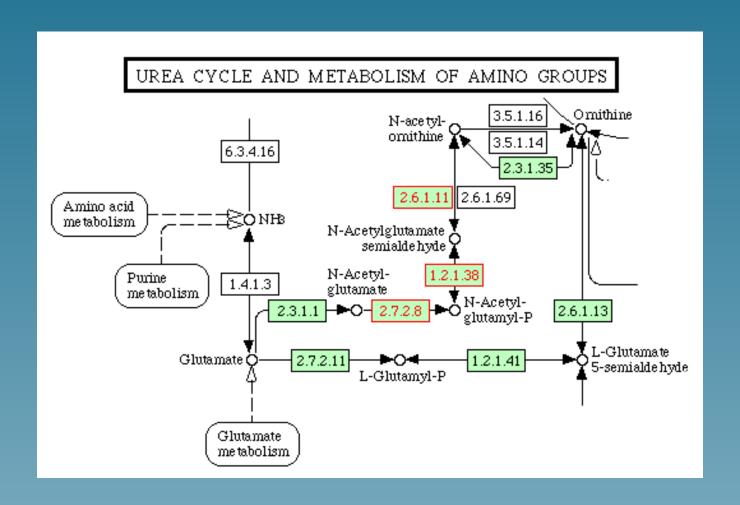
Opposite pattern



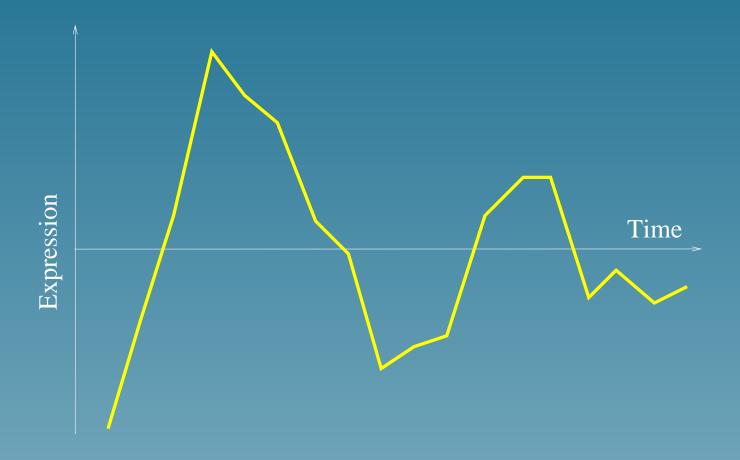
- RNA polymerase (11 genes)
- Pyrimidine metabolism (10)
- Aminoacyl-tRNA biosynthesis (7)
- Urea cycle and metabolism of amino groups (3)
- Oxidative phosphorlation (3)
- ATP synthesis(3), etc...



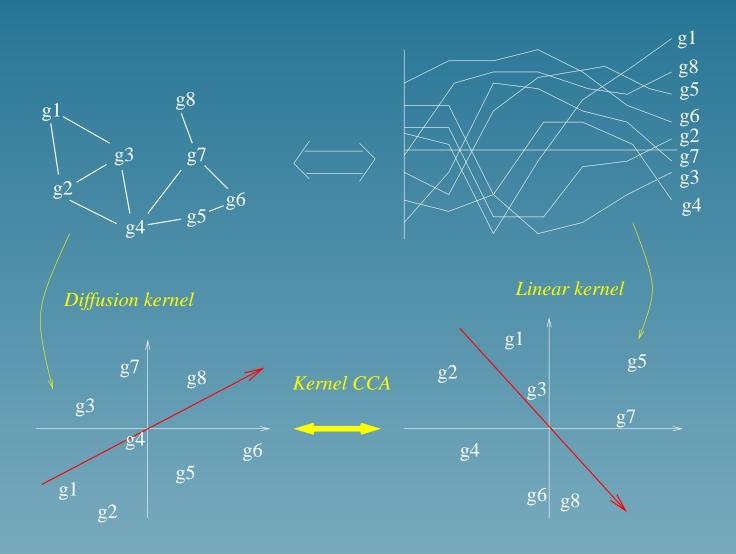




Second pattern



Another point of view



Extensions

- Kernel PCA can be used instead of PCA to extract nonlinear features from expression profiles
- Can be used to extract features from expression profiles (NIPS)
 2002)
- Can be generalized to more than 2 datasets and other kernels
- Can be used to extract clusters of genes (e.g., operon detection, $ISMB\ 03$ with Y. Yamanishi, A. Nakaya and M. Kanehisa)

Conclusion

Conclusion

- An approach to integrate heterogeneous data (expression profiles and network)
- A particular case of more generic methods (kernel methods)
- Generalization to other types of data and more than two datasets is possible (see ISMB's paper with Yamanishi)