Kernel methods in computational biology

Jean-Philippe.Vert@mines.org

Ecole des Mines de Paris
Computational Biology group

Learning@Snowbird, April 8, 2004.

Motivations

Biology is facing many machine learning challenges. Massive amounts of data are generated, characterized by:

- structured and heterogeneous data (sequences, 3D structures, graphs, networks, expression profiles, phylogenetic trees, SNP, ...)
- in large quantities (10^{6} gene sequences)
- in high dimension (one DNA chip monitors $10^{5} \sim 10^{6}$ genes)

Motivations

Kernel methods provide (partial) solutions to this challenges:

- Kernels for structured data
- Operations on kernels to integrate heterogeneous data
- Regularization (in rkhs) to cope with high dimension
- Statistical approaches to extract informations from large amounts of data

Motivations

SVM and kernel methods are becoming popular in bioinformatics

- "Kernel methods in computational biology", MIT Press, 2004
- "Applications of SVM in computational biology", Bill Noble, 2004, available on the web

Overview

1. Local alignment kernels for biological sequences
2. Supervised gene network inference

Part 1

Local alignment kernel for biological sequences
 (with S. Hiroto and T. Akutsu)

Biological sequences

- High-throughput genome sequencing produces many sequences
- 181 published genomes (including human!), 1084 ongoing projects

Gene sequences

- Genes are short parts in the genome, automatically detected by computational methods.
- Genes encode proteins $=$ molecules of interest
- Currently $\sim 10^{6}$ gene sequences available
- Challenges: annotate, classify, predict structures, functions, interactions, regulation...

Kernel methods

- In order to apply kernel methods, we need a kernel for gene sequences
- Sequences of length $50 \sim 1000$ over a 20 -letter alphabet \mathcal{A} (the amino acids)

Related work

- Spectrum/mismatch kernel (Leslie et al.,2002/03):

$$
K\left(x_{1} \ldots x_{m}, y_{1} \ldots y_{n}\right)=\sum_{i=1}^{m-k} \sum_{j=1}^{n-k} \delta\left(x_{i} \ldots x_{i+k}, y_{j} \ldots y_{j+k}\right) .
$$

Related work

- Spectrum/mismatch kernel (Leslie et al.,2002/03):

$$
K\left(x_{1} \ldots x_{m}, y_{1} \ldots y_{n}\right)=\sum_{i=1}^{m-k} \sum_{j=1}^{n-k} \delta\left(x_{i} \ldots x_{i+k}, y_{j} \ldots y_{j+k}\right) .
$$

- Fisher kernel (Jaakkola et al., 2000): given a statistical model $\left(p_{\theta}, \theta \in \Theta \subset \mathbb{R}^{d}\right)$:

$$
\phi(x)=\nabla_{\theta} \log p_{\theta}(x)
$$

and use the Fisher information matrix.

Our approach

- Remember a kernel $K(x, y)$ can be thought of as a measure of similarity between x and y
- Methods to score the similarity of gene sequences have been developed and "optimized" over the last 20 years.
- Can they be used as kernels?
- How to develop kernels that mimic them?

Local alignment

- Let two strings:
$x=$ AMACGGSLIAMMWFGVRFF
$y=$ LGCLIVMMNRLMWFGVSGVV
- A local alignment with gaps π is for example:

AMACGGSLIAMM----WFGVRFF.

.LGC---LIVMMNRLMWFGVSGVV

Local alignment score

- $S: \mathcal{A}^{2} \rightarrow \mathbb{R}$ (substitution matrix)
- $g: \mathbb{N} \rightarrow \mathbb{R}$ (gap penalty function)

AMACGGSLIAMM----WFGVRFF .
. . . | . . ||||| . . . ||||
.LGC---LIVMMNRLMWFGVSGVV

$$
\begin{aligned}
s_{S, g}(\pi) & =S(C, C)+S(L, L)+S(I, I)+S(A, V)+2 S(M, M) \\
& +S(W, W)+S(F, F)+S(G, G)+S(V, V)-g(3)-g(4)
\end{aligned}
$$

Smith-Waterman (SW) score

$$
S W(x, y)=\max _{\pi \in \Pi(x, y)} s(x, y, \pi)
$$

- Computed by dynamic programming $O(|x||y|)$
- Not a kernel in general (VSA, 2004)

Convolution kernels (Haussler 99)

- Let K_{1} and K_{2} be two kernels for strings
- Their convolution is the following valid kernel:

$$
K_{1} \star K_{2}(x, y)=\sum_{x_{1} x_{2}=x, y_{1} y_{2}=y} K_{1}\left(x_{1}, y_{1}\right) K_{2}\left(x_{2}, y_{2}\right)
$$

3 basic kernels

- For the unaligned parts: $K_{0}(x, y)=1$.

3 basic kernels

- For the unaligned parts: $K_{0}(x, y)=1$.
- For aligned residues:

$$
K_{a}^{(\beta)}(x, y)= \begin{cases}0 & \text { if }|x| \neq 1 \text { or }|y| \neq 1, \\ \exp (\beta s(x, y)) & \text { otherwise }\end{cases}
$$

3 basic kernels

- For the unaligned parts: $K_{0}(x, y)=1$.
- For aligned residues:

$$
K_{a}^{(\beta)}(x, y)= \begin{cases}0 & \text { if }|x| \neq 1 \text { or }|y| \neq 1, \\ \exp (\beta s(x, y)) & \text { otherwise }\end{cases}
$$

- For gaps:

$$
K_{g}^{(\beta)}(x, y)=\exp [\beta(g(|x|)+g(|y|))]
$$

Combining the kernels

- Detecting local alignments of exactly n residues:

$$
K_{(n)}^{(\beta)}(x, y)=K_{0} \star\left(K_{a}^{(\beta)} \star K_{g}^{(\beta)}\right)^{(n-1)} \star K_{a}^{(\beta)} \star K_{0} .
$$

Combining the kernels

- Detecting local alignments of exactly n residues:

$$
K_{(n)}^{(\beta)}(x, y)=K_{0} \star\left(K_{a}^{(\beta)} \star K_{g}^{(\beta)}\right)^{(n-1)} \star K_{a}^{(\beta)} \star K_{0} .
$$

- Considering all possible local alignments:

$$
K_{L A}^{(\beta)}=\sum_{i=0}^{\infty} K_{(i)}^{(\beta)}
$$

Properties

- Interpretation in terms of local alignment scores:

$$
K_{L A}^{(\beta)}(x, y)=\sum_{\pi \in \Pi(x, y)} \exp (\beta s(x, y, \pi))
$$

Properties

- Interpretation in terms of local alignment scores:

$$
K_{L A}^{(\beta)}(x, y)=\sum_{\pi \in \Pi(x, y)} \exp (\beta s(x, y, \pi)),
$$

- Link with the SW score:

$$
\lim _{\beta \rightarrow+\infty} \frac{1}{\beta} \ln K_{L A}^{(\beta)}(x, y)=S W(x, y) .
$$

Kernel computation

LA Kernel in practice

- $K(x, y)$ decreases exponentially with $|x|$ and $|y|$
- Problem of diagonal dominance, and normalization
- Caveat: take

$$
\tilde{K}_{L A}^{(\beta)}(x, y)=\frac{1}{\beta} \ln K_{L A}^{(\beta)}(x, y)
$$

and "massage the matrix" to make it positive definite

Application: remote homology detection

- Same structure/function but sequence diverged
- Remote homology can not be found by direct sequence similarity

SCOP database

A benchmark experiment

- Can we predict the superfamily of a domain if we have not seen any member of its family before?

A benchmark experiment

- Can we predict the superfamily of a domain if we have not seen any member of its family before?
- During learning: remove a family and learn the difference between the superfamily and the rest

A benchmark experiment

- Can we predict the superfamily of a domain if we have not seen any member of its family before?
- During learning: remove a family and learn the difference between the superfamily and the rest
- Then, use the model to test each domain of the family removed

SCOP superfamily recognition benchmark

Open questions / Ongoing work

- Length normalization?

Open questions / Ongoing work

- Length normalization?
- For which parameters g and S is SW a valid kernel?

Open questions / Ongoing work

- Length normalization?
- For which parameters g and S is SW a valid kernel?
- What is the trade-off between diagonal dominance issues and other properties of string kernels?

Part 2

Supervised gene network inference

(with Y.Yamanishi)

Motivations

- Most biochemical/biological processes involve interactions between genes
- Deciphering these interactions is the next big challenge in computational biology ("systems biology")
- Mathematically, a graph is a convenient representation when only pairwise interactions are considered

Gene/protein network examples

- physical interaction network (interactome)
- gene regulatory network
- biochemical/metabolic network

Example: the yeast interactome

Example: metabolic network

The network inference problem

Given some measurement/observation about the genes (sequences, structure, expression, ...), infer "the" gene network

Example: gene expression

Related approaches

- Bayesian nets for regulatory networks (Friedman et al. 2000)
- Boolean networks (Akutsu, 2000)
- Joint graph method (Marcotte et al, 1999)

A direct (unsupervised) approach

- Let $K(x, y)$ be a measure of similarity (a kernel) between genes x and y based on available measurements, e.g.,

$$
K(x, y)=\exp \left(-\frac{\|e(x)-e(y)\|^{2}}{2 \sigma^{2}}\right)
$$

- For a set of n genes $\left\{x_{1}, \ldots, x_{n}\right\}$, let K be the $n \times n$ matrix of pairwise similarity (Gram matrix)
- Direct strategy: add edges between genes by decreasing similarity.

Evaluation of the direct approach

The metabolic network of the yeast involves 769 genes. Each gene is represented by 157 expression measurements. $(\mathrm{ROC}=0.52)$

The supervised gene inference problem

The supervised gene inference problem

A two-step strategy

First map any gene x onto a vector

$$
\Phi(x)=\left(f_{1}(x), \ldots, f_{d}(x)\right)^{\prime} \in \mathbb{R}^{d}
$$

A two-step strategy

- First map any gene x onto a vector

$$
\Phi(x)=\left(f_{1}(x), \ldots, f_{d}(x)\right)^{\prime} \in \mathbb{R}^{d}
$$

- Then apply the direct strategy to reconstruct the graph from the images $\left\{\Phi\left(x_{1}\right), \ldots, \Phi\left(x_{n}\right)\right\}$

A two-step strategy

- First map any gene x onto a vector

$$
\Phi(x)=\left(f_{1}(x), \ldots, f_{d}(x)\right)^{\prime} \in \mathbb{R}^{d}
$$

- Then apply the direct strategy to reconstruct the graph from the images $\left\{\Phi\left(x_{1}\right), \ldots, \Phi\left(x_{n}\right)\right\}$
- The functions f_{1}, \ldots, f_{d} can be learned from the knowledge of the graph on the first n genes

Criterion for f

- A feature $f: \mathcal{X} \rightarrow \mathbb{R}$ is good on the training set if connected genes have similar value. A possible criterion is:

$$
R(f)=\sum_{(x, y) \in E}(f(x)-f(y))^{2}-\sum_{(x, y) \notin E}(f(x)-f(y))^{2}
$$

Criterion for f

- A feature $f: \mathcal{X} \rightarrow \mathbb{R}$ is good on the training set if connected genes have similar value. A possible criterion is:

$$
R(f)=\sum_{(x, y) \in E}(f(x)-f(y))^{2}-\sum_{(x, y) \notin E}(f(x)-f(y))^{2}
$$

- When $\sum_{i=1}^{n} f\left(x_{i}\right)=0$ and $\sum_{i=1}^{n} f\left(x_{i}\right)^{2}=1$, this reduces to:

$$
R(f)=\sum_{(x, y) \in E}(f(x)-f(y))^{2}
$$

Working in rkhs

- Searching for features $f: \mathcal{X} \rightarrow \mathbb{R}$ in the rkhs \mathcal{H} defined by the kernel K, this suggests the following optimization problem:

$$
\min _{f \in \mathcal{H}_{0}} \sum_{(x, y) \in E}(f(x)-f(y))^{2}+\lambda\|f\|_{\mathcal{H}}^{2}
$$

where \mathcal{H}_{0} is the set of functions $f \in \mathcal{H}$ such that $\sum_{i=1}^{n} f\left(x_{i}\right)=0$ and $\sum_{i=1}^{n} f\left(x_{i}\right)^{2}=1$

Solving the problem

- By the representer theorem, f can be expanded as:

$$
f(x)=\sum_{i=1}^{n} \alpha_{i} K\left(x_{i}, x\right) .
$$

Solving the problem (cont.)

- The problem can then be rewritten:

$$
\min _{\alpha \in \mathbb{R}^{n}}\left\{\alpha^{\top} K_{0} L K_{0} \alpha+\lambda \alpha^{\top} K_{0} \alpha\right\}
$$

under the constraint $\alpha^{\top} K_{0}^{2} \alpha=1$, where:
$\star L$ is the $n \times n$ graph Laplacian
$\star K_{0}$ is the centered $n \times n$ Gram matrix

Solving the problem (cont.)

- The problem can then be rewritten:

$$
\min _{\alpha \in \mathbb{R}^{n}}\left\{\alpha^{\top} K_{0} L K_{0} \alpha+\lambda \alpha^{\top} K_{0} \alpha\right\}
$$

under the constraint $\alpha^{\top} K_{0}^{2} \alpha=1$, where:
$\star L$ is the $n \times n$ graph Laplacian
$\star K_{0}$ is the centered $n \times n$ Gram matrix

- It is equivalent to solving the generalized eigenvalue problem:

$$
\left(L K_{0}+\lambda I\right) \alpha=\mu K_{0} \alpha .
$$

Evaluation of the supervised approach: effect of λ

Metabolic network, 10-fold cross-validation, 1 feature

Evaluation of the supervised approach: number of features ($\lambda=2$)

Learning from heterogeneous data

- Suppose several data are available about the genes, e.g., expression, localization, struture, predicted interaction etc...
- Each data can be represented by a kernel matrix K_{1}, \ldots, K_{p}
- Kernel can be combined by various operations, e.g., addition:

$$
K=\sum_{i=1}^{p} K_{i}
$$

Learning from heterogeneous data (unsupervised)

Learning from heterogeneous data (supervised)

Extensions

- The Laplacian can be replaced by another inverse of a graph kernel (e.g., of a diffusion kernel)
- Other formulations can lead to kernel CCA (NIPS 02)
- The feature extracted can be used for datamining (ECCB 2003)

Open questions / Ongoing work

- What should be the number of features (problem of embedding a graph in low dimension)
- Develop a theoretical analysis of the supervised network inference problem
- Other cost functions

Conclusion

Conclusion

- Kernels offer a versatile framework to represent biological data
- A lot of work on kernel design / kernel learning, with good results on real-world data
- A new approach to supervised network inference, many possible variants and more theory required

