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Motivations

Biology is facing many machine learning challenges. Massive

amounts of data are generated, characterized by:

• structured and heterogeneous data (sequences, 3D structures,

graphs, networks, expression profiles, phylogenetic trees, SNP,

...)

• in large quantities (106 gene sequences)

• in high dimension (one DNA chip monitors 105 ∼ 106 genes)
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Motivations

Kernel methods provide (partial) solutions to this challenges:

• Kernels for structured data

• Operations on kernels to integrate heterogeneous data

• Regularization (in rkhs) to cope with high dimension

• Statistical approaches to extract informations from large amounts

of data
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Motivations

SVM and kernel methods are becoming popular in bioinformatics

• “Kernel methods in computational biology”, MIT Press, 2004

• “Applications of SVM in computational biology”, Bill Noble, 2004,

available on the web
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Overview

1. Local alignment kernels for biological sequences

2. Supervised gene network inference
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Part 1

Local alignment kernel for
biological sequences

(with S. Hiroto and T. Akutsu)
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Biological sequences

• High-throughput genome sequencing produces many sequences

• 181 published genomes (including human!), 1084 ongoing projects
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Gene sequences

• Genes are short parts in the genome, automatically detected by

computational methods.

• Genes encode proteins = molecules of interest

• Currently ∼ 106 gene sequences available

• Challenges: annotate, classify, predict structures, functions,

interactions, regulation...
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Kernel methods

• In order to apply kernel methods, we need a kernel for gene

sequences

• Sequences of length 50 ∼ 1000 over a 20-letter alphabet A (the

amino acids)
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Related work

• Spectrum/mismatch kernel (Leslie et al.,2002/03):

K(x1 . . . xm, y1 . . . yn) =
m−k∑
i=1

n−k∑
j=1

δ(xi . . . xi+k, yj . . . yj+k).
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Related work

• Spectrum/mismatch kernel (Leslie et al.,2002/03):

K(x1 . . . xm, y1 . . . yn) =
m−k∑
i=1

n−k∑
j=1

δ(xi . . . xi+k, yj . . . yj+k).

• Fisher kernel (Jaakkola et al., 2000): given a statistical model(
pθ, θ ∈ Θ ⊂ Rd

)
:

φ(x) = ∇θ log pθ(x)
and use the Fisher information matrix.
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Our approach

• Remember a kernel K(x, y) can be thought of as a measure of

similarity between x and y

• Methods to score the similarity of gene sequences have been

developed and “optimized” over the last 20 years.

• Can they be used as kernels?

• How to develop kernels that mimic them?
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Local alignment

• Let two strings:

x = AMACGGSLIAMMWFGVRFF
y = LGCLIVMMNRLMWFGVSGVV

• A local alignment with gaps π is for example:

AMACGGSLIAMM----WFGVRFF.
...|...|||||....||||....
.LGC---LIVMMNRLMWFGVSGVV
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Local alignment score

• S : A2 → R (substitution matrix)

• g : N → R (gap penalty function)

AMACGGSLIAMM----WFGVRFF.
...|...|||||....||||....
.LGC---LIVMMNRLMWFGVSGVV

sS,g(π) = S(C,C) + S(L,L) + S(I, I) + S(A, V ) + 2S(M,M)

+ S(W,W ) + S(F, F ) + S(G, G) + S(V, V )− g(3)− g(4)
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Smith-Waterman (SW) score

SW (x, y) = max
π∈Π(x,y)

s(x, y, π)

• Computed by dynamic programming O(|x||y|)

• Not a kernel in general (VSA, 2004)
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Convolution kernels (Haussler 99)

• Let K1 and K2 be two kernels for strings

• Their convolution is the following valid kernel:

K1 ? K2(x, y) =
∑

x1x2=x,y1y2=y

K1(x1, y1)K2(x2, y2)
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3 basic kernels

• For the unaligned parts: K0(x, y) = 1.
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3 basic kernels

• For the unaligned parts: K0(x, y) = 1.

• For aligned residues:

K(β)
a (x, y) =

{
0 if |x| 6= 1 or |y| 6= 1,

exp (βs(x, y)) otherwise
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3 basic kernels

• For the unaligned parts: K0(x, y) = 1.

• For aligned residues:

K(β)
a (x, y) =

{
0 if |x| 6= 1 or |y| 6= 1,

exp (βs(x, y)) otherwise

• For gaps:

K(β)
g (x, y) = exp [β (g(|x|) + g(|y|))]



17

Combining the kernels

• Detecting local alignments of exactly n residues:

K
(β)
(n)(x, y) = K0 ?

(
K(β)

a ? K(β)
g

)(n−1)

? K(β)
a ? K0.
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Combining the kernels

• Detecting local alignments of exactly n residues:

K
(β)
(n)(x, y) = K0 ?

(
K(β)

a ? K(β)
g

)(n−1)

? K(β)
a ? K0.

• Considering all possible local alignments:

K
(β)
LA =

∞∑
i=0

K
(β)
(i) .
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Properties

• Interpretation in terms of local alignment scores:

K
(β)
LA(x, y) =

∑
π∈Π(x,y)

exp (βs(x, y, π)) ,
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Properties

• Interpretation in terms of local alignment scores:

K
(β)
LA(x, y) =

∑
π∈Π(x,y)

exp (βs(x, y, π)) ,

• Link with the SW score:

lim
β→+∞

1
β

lnK
(β)
LA(x, y) = SW (x, y).
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Kernel computation
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LA Kernel in practice

• K(x, y) decreases exponentially with |x| and |y|

• Problem of diagonal dominance, and normalization

• Caveat: take

K̃
(β)
LA(x, y) =

1
β

lnK
(β)
LA(x, y)

and “massage the matrix” to make it positive definite
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Application: remote homology detection
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• Same structure/function but sequence diverged

• Remote homology can not be found by direct sequence similarity
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SCOP database
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A benchmark experiment

• Can we predict the superfamily of a domain if we have not seen

any member of its family before?
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A benchmark experiment

• Can we predict the superfamily of a domain if we have not seen

any member of its family before?

• During learning: remove a family and learn the difference between

the superfamily and the rest
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A benchmark experiment

• Can we predict the superfamily of a domain if we have not seen

any member of its family before?

• During learning: remove a family and learn the difference between

the superfamily and the rest

• Then, use the model to test each domain of the family removed
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SCOP superfamily recognition benchmark
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Open questions / Ongoing work

• Length normalization?
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Open questions / Ongoing work

• Length normalization?

• For which parameters g and S is SW a valid kernel?
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Open questions / Ongoing work

• Length normalization?

• For which parameters g and S is SW a valid kernel?

• What is the trade-off between diagonal dominance issues and other

properties of string kernels?
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Part 2

Supervised gene network
inference
(with Y.Yamanishi)
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Motivations

• Most biochemical/biological processes involve interactions between

genes

• Deciphering these interactions is the next big challenge in

computational biology (“systems biology”)

• Mathematically, a graph is a convenient representation when only

pairwise interactions are considered
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Gene/protein network examples

• physical interaction network (interactome)

• gene regulatory network

• biochemical/metabolic network
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Example: the yeast interactome
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Example: metabolic network



31

The network inference problem

Given some measurement/observation about the genes (sequences,

structure, expression, ...), infer “the” gene network
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Example: gene expression
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Related approaches

• Bayesian nets for regulatory networks (Friedman et al. 2000)

• Boolean networks (Akutsu, 2000)

• Joint graph method (Marcotte et al, 1999)
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A direct (unsupervised) approach

• Let K(x, y) be a measure of similarity (a kernel) between genes x

and y based on available measurements, e.g.,

K(x, y) = exp
(
−||e(x)− e(y)||2

2σ2

)

• For a set of n genes {x1, . . . , xn}, let K be the n × n matrix of

pairwise similarity (Gram matrix)

• Direct strategy: add edges between genes by decreasing similarity.
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Evaluation of the direct approach

The metabolic network of the yeast involves 769 genes. Each gene is

represented by 157 expression measurements. (ROC=0.52)
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The supervised gene inference problem
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The supervised gene inference problem
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A two-step strategy

• First map any gene x onto a vector

Φ(x) = (f1(x), . . . , fd(x))′ ∈ Rd
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A two-step strategy

• First map any gene x onto a vector

Φ(x) = (f1(x), . . . , fd(x))′ ∈ Rd

• Then apply the direct strategy to reconstruct the graph from the

images {Φ(x1), . . . ,Φ(xn)}
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A two-step strategy

• First map any gene x onto a vector

Φ(x) = (f1(x), . . . , fd(x))′ ∈ Rd

• Then apply the direct strategy to reconstruct the graph from the

images {Φ(x1), . . . ,Φ(xn)}

• The functions f1, . . . , fd can be learned from the knowledge of the

graph on the first n genes
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Criterion for f

• A feature f : X → R is good on the training set if connected genes

have similar value. A possible criterion is:

R(f) =
∑

(x,y)∈E

(f(x)− f(y))2 −
∑

(x,y)/∈E

(f(x)− f(y))2
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Criterion for f

• A feature f : X → R is good on the training set if connected genes

have similar value. A possible criterion is:

R(f) =
∑

(x,y)∈E

(f(x)− f(y))2 −
∑

(x,y)/∈E

(f(x)− f(y))2

• When
∑n

i=1 f(xi) = 0 and
∑n

i=1 f(xi)2 = 1, this reduces to:

R(f) =
∑

(x,y)∈E

(f(x)− f(y))2
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Working in rkhs

• Searching for features f : X → R in the rkhs H defined by the

kernel K, this suggests the following optimization problem:

min
f∈H0

∑
(x,y)∈E

(f(x)− f(y))2 + λ||f ||2H

where H0 is the set of functions f ∈ H such that
∑n

i=1 f(xi) = 0
and

∑n
i=1 f(xi)2 = 1
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Solving the problem

• By the representer theorem, f can be expanded as:

f(x) =
n∑

i=1

αiK(xi, x).
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Solving the problem (cont.)

• The problem can then be rewritten:

min
α∈Rn

{
α>K0LK0α + λα>K0α

}
under the constraint α>K2

0α = 1, where:

? L is the n× n graph Laplacian

? K0 is the centered n× n Gram matrix
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Solving the problem (cont.)

• The problem can then be rewritten:

min
α∈Rn

{
α>K0LK0α + λα>K0α

}
under the constraint α>K2

0α = 1, where:

? L is the n× n graph Laplacian

? K0 is the centered n× n Gram matrix

• It is equivalent to solving the generalized eigenvalue problem:

(LK0 + λI)α = µK0α.
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Evaluation of the supervised approach: effect of λ

Metabolic network, 10-fold cross-validation, 1 feature
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Evaluation of the supervised approach: number of
features (λ = 2)
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Learning from heterogeneous data

• Suppose several data are available about the genes, e.g., expression,

localization, struture, predicted interaction etc...

• Each data can be represented by a kernel matrix K1, . . . ,Kp

• Kernel can be combined by various operations, e.g., addition:

K =
p∑

i=1

Ki
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Learning from heterogeneous data (unsupervised)
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Learning from heterogeneous data (supervised)
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Extensions

• The Laplacian can be replaced by another inverse of a graph kernel

(e.g., of a diffusion kernel)

• Other formulations can lead to kernel CCA (NIPS 02)

• The feature extracted can be used for datamining (ECCB 2003)
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Open questions / Ongoing work

• What should be the number of features (problem of embedding a

graph in low dimension)

• Develop a theoretical analysis of the supervised network inference

problem

• Other cost functions
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Conclusion
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Conclusion

• Kernels offer a versatile framework to represent biological data

• A lot of work on kernel design / kernel learning, with good results

on real-world data

• A new approach to supervised network inference, many possible

variants and more theory required


