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Motivations

• Large-scale graphs are nowadays ubiquitous in many research fields

in particular genomics/biology...

• Large-scale high-throughput technologies, systems biology, ...

• They are getting popular in machine learning / statistics too and

new methods are being developed to deal with real-world networks
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Internet
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Social Network
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Protein interaction network
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Spatial data
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Two important problems

• Inferring network from observation about individual nodes.

? Application: gene network inference, protein interaction

inference, gene regulation, metabolic pathways....

? Idea: “similar” nodes should be connected
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Two important problems

• Inferring network from observation about individual nodes.

? Application: gene network inference, protein interaction

inference, gene regulation, metabolic pathways....

? Idea: “similar” nodes should be connected

• Given a network with a few labeled nodes, infer the labels of other

nodes.

? Example: infer protein fold on the protein similarity networks.

? Idea = going from local similarities to global inference
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Problem 1
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Problem 2
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Problem 2
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Part 1

Supervised gene network
inference
(with Y.Yamanishi)
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Motivations

• Most biochemical/biological processes involve interactions between

genes

• Deciphering these interactions is the next big challenge in

computational biology (“systems biology”)

• Mathematically, a graph is a convenient representation when only

pairwise interactions are considered
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The network inference problem

Given some measurement/observation about the genes (sequences,

structure, expression, ...), infer “the” gene network
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Example: gene expression
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Related approaches

• Bayesian nets for regulatory networks (Friedman et al. 2000)

• Boolean networks (Akutsu, 2000)

• Joint graph method (Marcotte et al, 1999)
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A direct (unsupervised) approach

• Let K(x, y) be a measure of similarity (a kernel) between genes x

and y based on available measurements, e.g.,

K(x, y) = exp
(
−||e(x)− e(y)||2

2σ2

)

• For a set of n genes {x1, . . . , xn}, let K be the n × n matrix of

pairwise similarity (Gram matrix)

• Direct strategy: add edges between genes by decreasing similarity.
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Example of similarity matrix
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Evaluation of the direct approach

The metabolic network of the yeast involves 769 genes. Each gene is

represented by 157 expression measurements. (ROC=0.52)
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The supervised gene inference problem
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The supervised gene inference problem
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The idea in a nutshell

• Use the known network to define a more relevant measure of

similarity

• For any positive definite similarity n × n matrix, there exists

a representation as n-dimensional vectors such that the matrix

similarity is exactly the similarity between vectors.

• In this space, look for projections onto small-dimensional spaces

that better fit the known network.



21

A two-step strategy

• First map any gene x onto a vector

Φ(x) = (f1(x), . . . , fd(x))′ ∈ Rd
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A two-step strategy

• First map any gene x onto a vector

Φ(x) = (f1(x), . . . , fd(x))′ ∈ Rd

• Then apply the direct strategy to reconstruct the graph from the

images {Φ(x1), . . . ,Φ(xn)}
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A two-step strategy

• First map any gene x onto a vector

Φ(x) = (f1(x), . . . , fd(x))′ ∈ Rd

• Then apply the direct strategy to reconstruct the graph from the

images {Φ(x1), . . . ,Φ(xn)}

• The functions f1, . . . , fd can be learned from the knowledge of the

graph on the first n genes



22

Criterion for f

• A feature f : X → R is good on the training set if connected genes

have similar value. A possible criterion is:

R(f) =
∑

(x,y)∈E

(f(x)− f(y))2 −
∑

(x,y)/∈E

(f(x)− f(y))2
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Criterion for f

• A feature f : X → R is good on the training set if connected genes

have similar value. A possible criterion is:

R(f) =
∑

(x,y)∈E

(f(x)− f(y))2 −
∑

(x,y)/∈E

(f(x)− f(y))2

• When
∑n

i=1 f(xi) = 0 and
∑n

i=1 f(xi)2 = 1, this reduces to:

R(f) =
∑

(x,y)∈E

(f(x)− f(y))2
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Working in rkhs

• Searching for features f : X → R in the rkhs H defined by the

kernel K, this suggests the following optimization problem:

min
f∈H0

∑
(x,y)∈E

(f(x)− f(y))2 + λ||f ||2H

where H0 is the set of functions f ∈ H such that
∑n

i=1 f(xi) = 0
and

∑n
i=1 f(xi)2 = 1
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Solving the problem

• By the representer theorem, f can be expanded as:

f(x) =
n∑

i=1

αiK(xi, x).
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Solving the problem (cont.)

• The problem can then be rewritten:

min
α∈Rn

{
α>K0LK0α + λα>K0α

}
under the constraint α>K2

0α = 1, where:

? L is the n× n graph Laplacian

? K0 is the centered n× n Gram matrix
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Solving the problem (cont.)

• The problem can then be rewritten:

min
α∈Rn

{
α>K0LK0α + λα>K0α

}
under the constraint α>K2

0α = 1, where:

? L is the n× n graph Laplacian

? K0 is the centered n× n Gram matrix

• It is equivalent to solving the generalized eigenvalue problem:

(LK0 + λI)α = µK0α.
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Evaluation of the supervised approach: effect of λ

Metabolic network, 10-fold cross-validation, 1 feature
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Evaluation of the supervised approach: number of
features (λ = 2)



29

Learning from heterogeneous data

• Suppose several data are available about the genes, e.g., expression,

localization, struture, predicted interaction etc...

• Each data can be represented by a kernel matrix K1, . . . ,Kp

• Kernel can be combined by various operations, e.g., addition:

K =
p∑

i=1

Ki
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Learning from heterogeneous data (unsupervised)
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Learning from heterogeneous data (supervised)
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Extensions

• The Laplacian can be replaced by another inverse of a graph kernel

(e.g., of a diffusion kernel)

• Other formulations can lead to kernel CCA (NIPS 02)

• The feature extracted can be used for datamining (ECCB 2003)
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Open questions / Ongoing work

• What should be the number of features (problem of embedding a

graph in low dimension)

• Other cost functions

• How to better integrate several similarities? (semi-definite

programming?)
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Part 1

Inference on networks
(ongoing work in progress)
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Motivations

• Data can sometimes be represented naturally as nodes of a network

• Networks are convenient to define a global structure from local

similarities

• Example: close homology is easy to detect, defines the global

protein similarity network (Weston et al., 2004)

• Possible applications: remote homology detection, 3D fold

prediction...
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Problem 2
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Problem 2
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General approach

• The vertices V = Vl ∪ Vu are either labeled (Vl) or unlabeled (Vu)

• For any function f : V → R, use the graph to define a “prior”

functional Ω(f) (the smaller Ω(f), the more likely f .

• Define a loss function on the set of labeled vertices: L(f(Vu), yu)
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General approach (cont.)

• Find the best trade-off:

f̂ = arg min
f :V→R

L(f(Vu), yu) + λΩ(f)

• The prediction on unlabeled vertices is f̂(Vu)
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The “prior” on f

• A “likely” label assignment should vary smoothly on the graph

• A general smoothness functional for f ∈ RV is

Ω(f) = f>Lf,

where L is a n× n “inverse graph kernel”
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Prior examples

• Let a graph with weight Wi,j between vertices xi and xj

• Let D the diagonal matrix with Di,i =
∑

j Wi,j
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Prior examples

• Let a graph with weight Wi,j between vertices xi and xj

• Let D the diagonal matrix with Di,i =
∑

j Wi,j

• Average weighted variations:

Ω(f) =
∑

xi∼xj

Wi,j (f(xi)− f(xj))
2 = f>(D −W )f
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Prior examples (cont.)

• Average weighted variations:

Ω(f) =
∑

xi∼xj

Wi,j

(
f(xi)√

Di,i

− f(xj)√
Dj,j

)2

= f>(I−D−1/2WD−1/2)f

• Fourier spectrum quantization:

Ω(f) = f>eβ(D−W )f
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Perfect regression (Zhu et al. 2003)

• fl must fit exactly yl:

f̂ = arg min
f :V→R,f(Vl)=yl

f>Lf

• Solution:

f(Vu) = −L−1
u,uLu,lyl

• Interpretation: probability of first hitting a certain label by a

random walk on the graph starting from an unlabeled node.
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Noisy regression (Belkin et al. 2003; Zhu et al.
2003)

• The loss function is mean squares:

f̂ = arg min
f :V→R

1
l

∑
i ∈ L (f(xi − yi)

2 + λf>Lf

• Solution:

f̂(V ) = (Il + lλL)−1Ily
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• Interpretation: diffuse labels by iterating

ft+1 = (αIl + I − Il)Lft + (1− α)Ily
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Other applications

• Dimensionality reduction (Belkin et al., 2001):

f̂ = arg min
f :V→Rd,f>Df=1

λf>Lf

with solution Lf = µDf
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Other applications

• Dimensionality reduction (Belkin et al., 2001):

f̂ = arg min
f :V→Rd,f>Df=1

λf>Lf

with solution Lf = µDf

• Protein ranking (Weston et al., 2004): one positive example, all

other negative, noisy regression (“label diffusion”)
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Conclusion
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Conclusion

• A new approach to supervised network inference, many possible

variants and extensions

• Inference on networks is a rapidely expanding field with impressive

results. More applications to come

• Both approaches are related and could be combined.


