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Many metabolic pathways are known

From http://www.genome.ad.jp/kegg/pathway



3

Microarray technology monitors mRNA quantity

(From Spellman et al., 1998)
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Comparing gene expression and pathway databases

VS

Detect active pathways? Denoise expression data?

Denoise pathway database? Find new pathways?

Are there “correlations”?
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Overview

1. Feature extractions from expression data only

2. Detecting correlations with the metabolic databse

3. Experiments

4. Inferring new pathways
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Part 1

Feature extraction from
expression data only
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Motivation

• Pathways and biological events involve the coordinated action of

several genes

• Co-regulation is an important way to coordinate the action of

several genes

• Systematic variations in the set of gene expression profiles might

be an indicator of an underlying biological phenomenon



8

Using microarray only

PC1
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Using microarray only

PC1
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PCA finds the directions (profiles) explaining the largest amount of

variations among expression profiles.
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PCA formulation

• Let fv(i) be the projection of the i-th profile onto v.

• The amount of variation captured by fv is:

h1(v)−1 =
N∑

i=1

fv(i)2

• PCA finds an orthonormal basis by solving successively:

min
||v||=1

h1(v)
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Part 2

Detecting correlations with the
metabolic database
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Motivation

• PCA is useful if there is a small number of strong signal

• In concrete applications, we observe a noisy superposition of many

events

• Using a prior knowledge of metabolic networks can help denoising

the information detected by PCA
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The metabolic gene network
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Link two genes when they can catalyze two successive reactions
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Mapping fv to the metabolic gene network
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Does it look interesting or not?
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Important hypothesis

If v is related to a metabolic activity, then fv should vary

”smoothly” on the graph

Smooth Rugged
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Graph Laplacian L = D −A
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Smoothness quantification

h2(f) =
∑
i∼j

(f(i)− f(j))2 = f>Lf

or

h2(f) =
∑

i

f̂2
i eβωi = f> exp(βL)f

is small when f is smooth
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Where we are now...

For a candidate profile v,

• h1(fv) is small when v captures a lot of natural variation among

profiles

• h2(fv) is small when fv is smooth on the graph

Try to minimize both terms in the same time
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Problem reformulation

Find a function fv (and therefore a profile v) that solves:

min
v
{h1(fv) + λh2(fv)}

λ is a parameter that controls the trade-off.
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Solving the problem

• By the representer theorem, v can be expanded as:

v =
n∑

i=1

αie(xi).
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Solving the problem (cont.)

• The problem can then be rewritten:

min
α∈Rn

{
α>K0K2K0α + λα>K0α

}
under the constraint α>K2

0α = 1, where:

? K2 = exp(−βL) is the n× n diffusion kernel

? K0 is the centered n× n Gram matrix ([K0]i,j = e>i ej )
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Solving the problem (cont.)

• The problem can then be rewritten:

min
α∈Rn

{
α>K0K2K0α + λα>K0α

}
under the constraint α>K2

0α = 1, where:

? K2 = exp(−βL) is the n× n diffusion kernel

? K0 is the centered n× n Gram matrix ([K0]i,j = e>i ej )

• It is equivalent to solving the generalized eigenvalue problem:

(K2K0 + λI)α = µK0α.
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Part 3

Experiments
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Data

• Gene network: two genes are linked if the catalyze successive

reactions in the KEGG database (669 yeast genes)

• Expression profiles: 18 time series measures for the 6,000 genes of

yeast, during two cell cycles
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First pattern of expression

Time

E
xp

re
ss

io
n



26

Related metabolic pathways

50 genes with highest s2 − s1 belong to:

• Oxidative phosphorylation (10 genes)

• Citrate cycle (7)

• Purine metabolism (6)

• Glycerolipid metabolism (6)

• Sulfur metabolism (5), etc...
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Related genes
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Related genes
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Related genes
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Opposite pattern
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Related genes

• RNA polymerase (11 genes)

• Pyrimidine metabolism (10)

• Aminoacyl-tRNA biosynthesis (7)

• Urea cycle and metabolism of amino groups (3)

• Oxidative phosphorlation (3)

• ATP synthesis(3) , etc...
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Related genes
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Related genes
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Related genes
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Second pattern
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Part 4

Inferring new pathways
(with Y.Yamanishi)
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The network inference problem

Given some measurement/observation about the genes (sequences,

structure, expression, ...), infer “the” gene network



38

Related approaches

• Bayesian nets for regulatory networks (Friedman et al. 2000)

• Boolean networks (Akutsu, 2000)

• Joint graph method (Marcotte et al, 1999)
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A direct (unsupervised) approach

• Let K(x, y) be a measure of similarity (a kernel) between genes x

and y based on available measurements, e.g.,

K(x, y) = exp
(
−||e(x)− e(y)||2

2σ2

)

• For a set of n genes {x1, . . . , xn}, let K be the n × n matrix of

pairwise similarity (Gram matrix)

• Direct strategy: add edges between genes by decreasing similarity.
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Example of similarity matrix
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Evaluation of the direct approach

The metabolic network of the yeast involves 769 genes. Each gene is

represented by 157 expression measurements. (ROC=0.52)
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The supervised gene inference problem
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The supervised gene inference problem
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The idea in a nutshell

• Use the known network to define a more relevant measure of

similarity

• For any positive definite similarity n × n matrix, there exists

a representation as n-dimensional vectors such that the matrix

similarity is exactly the similarity between vectors.

• In this space, look for projections onto small-dimensional spaces

that better fit the known network.
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A two-step strategy

• First map any gene x onto a vector

Φ(x) = (f1(x), . . . , fd(x))′ ∈ Rd
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A two-step strategy

• First map any gene x onto a vector

Φ(x) = (f1(x), . . . , fd(x))′ ∈ Rd

• Then apply the direct strategy to reconstruct the graph from the

images {Φ(x1), . . . ,Φ(xn)}
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A two-step strategy

• First map any gene x onto a vector

Φ(x) = (f1(x), . . . , fd(x))′ ∈ Rd

• Then apply the direct strategy to reconstruct the graph from the

images {Φ(x1), . . . ,Φ(xn)}

• The functions f1, . . . , fd can be learned from the knowledge of the

graph on the first n genes
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Choice of f

• A feature f : X → R is good on the training set if connected genes

have similar value.

• This is exactly what we did in the previous part!

• So use the features already extracted to map new genes onto a

vector space by projection
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Evaluation of the supervised approach: effect of λ

Metabolic network, 10-fold cross-validation, 1 feature
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Evaluation of the supervised approach: number of
features (λ = 2)
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Learning from heterogeneous data

• Suppose several data are available about the genes, e.g., expression,

localization, struture, predicted interaction etc...

• Each data can be represented by a positive definite similarity matrix

K1, . . . ,Kp called kernels

• Kernel can be combined by various operations, e.g., addition:

K =
p∑

i=1

Ki
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Learning from heterogeneous data (unsupervised)
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Learning from heterogeneous data (supervised)
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Extensions

• The diffusion kernel can be replaced by another graph kernel

• Other formulations can lead to kernel CCA (NIPS 02)
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Open questions / Ongoing work

• What should be the number of features (problem of embedding a

graph in low dimension)

• Other cost functions

• How to better integrate several similarities? (semi-definite

programming?)
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Conclusion
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Conclusion

• A new approach to feature extractions and supervised network

inference, many possible variants and extensions

• Straightforward generalization to any network (e.g., interactome):

the same data can be used to infer different networks

• Possible connections with other algorithms (SVM, kernel CCA..)


