# Analysis and inference of gene networks from genomic data



Jean-Philippe Vert Ecole des Mines de Paris Computational Biology group Jean-Philippe.Vert@mines.org

"Complex Stochastic Systems in Biology and Medicine" workshop, Munich, Germany, October 7th, 2004.

#### Thanks

- Yoshihiro Yamanishi (Kyoto University)
- Computational biology at the Ecole des Mines

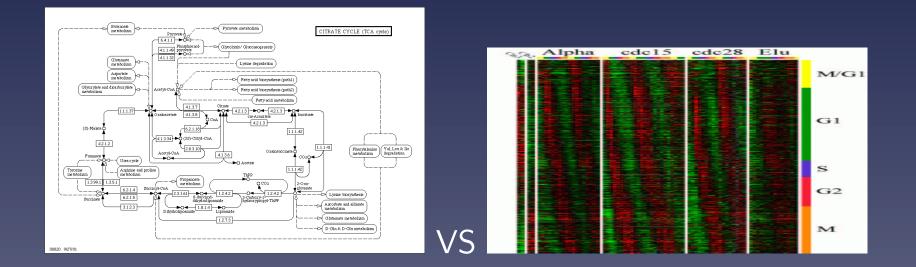


#### **Motivations**

- Many heterogeneous data about genes : sequences, expression, evolution, structures, etc...
- More and more data between genes: interactome, pathways, regulation etc...
- Goal: propose a formalism and algorithms to compare these data, and to infer gene networks from high-throughput genomic data.

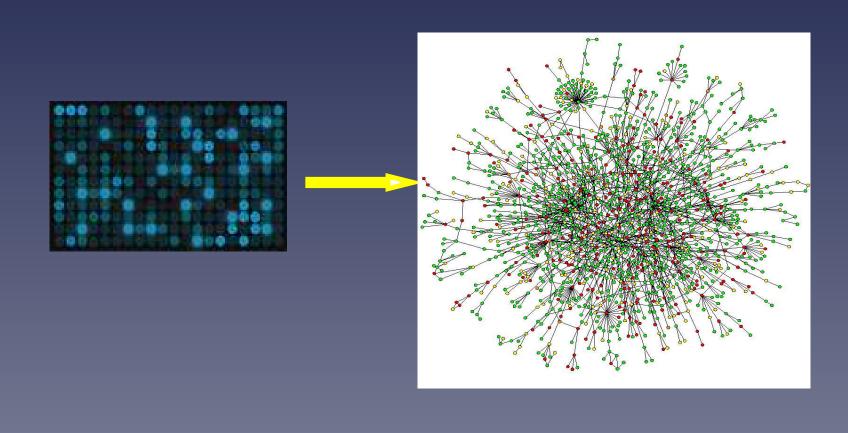
#### Example 1:

#### **Comparing gene expression and pathway databases**



Detect active pathways? Denoise expression data? Denoise pathway database? Find new pathways? Are there "correlations"?

# Example 2: Gene network inference



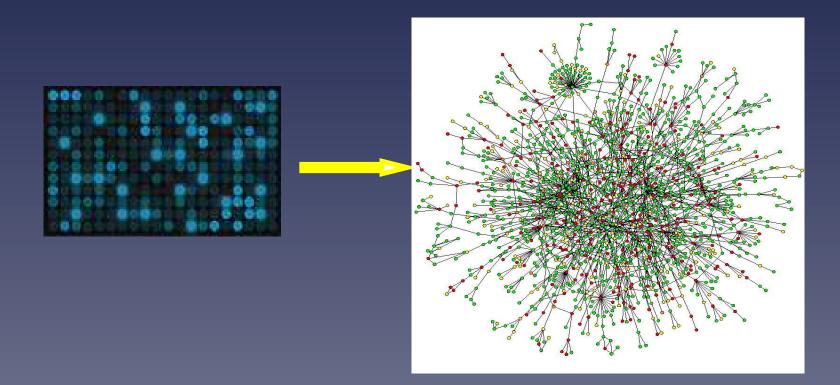
#### Outline

- A direct approach to network inference
- Supervised network inference
- Extraction of pathway activity
- Learning from several heterogeneous data

#### Part 1

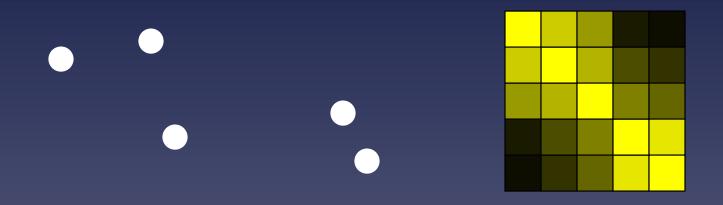
# A direct approach to network inference

# The problem



#### **Related approaches**

- Bayesian nets for regulatory networks (Friedman et al. 2000)
- Boolean networks (Akutsu, 2000)
- Joint graph method (Marcotte et al, 1999)

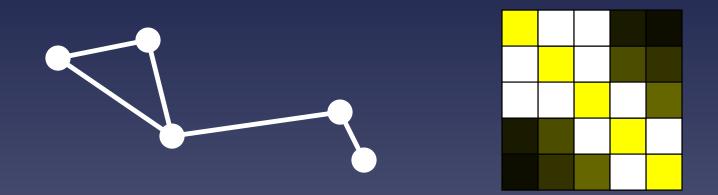


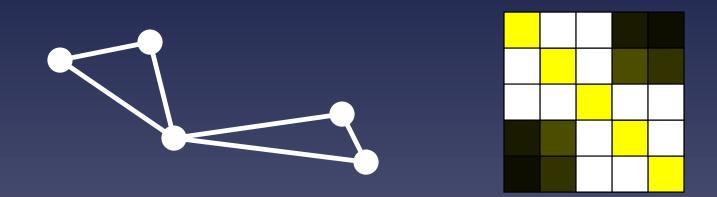


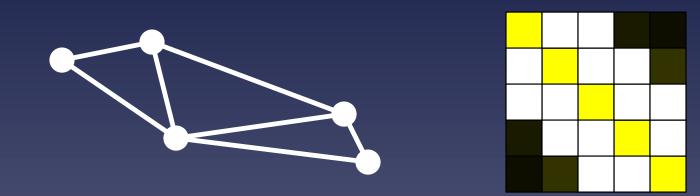


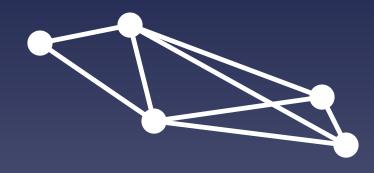


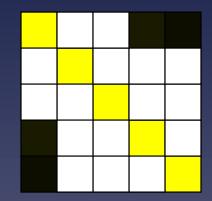


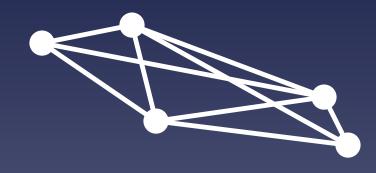


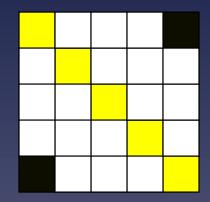


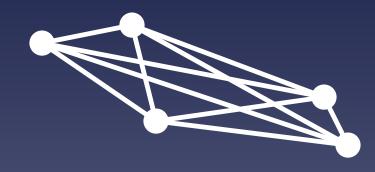


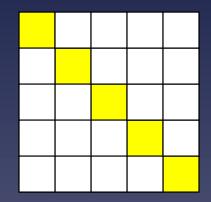


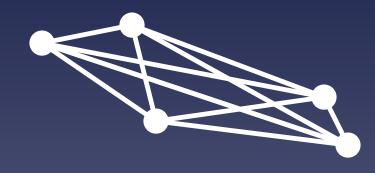


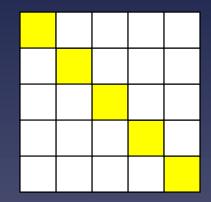


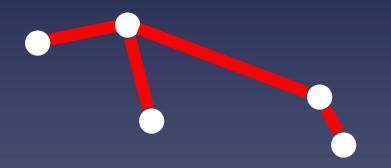


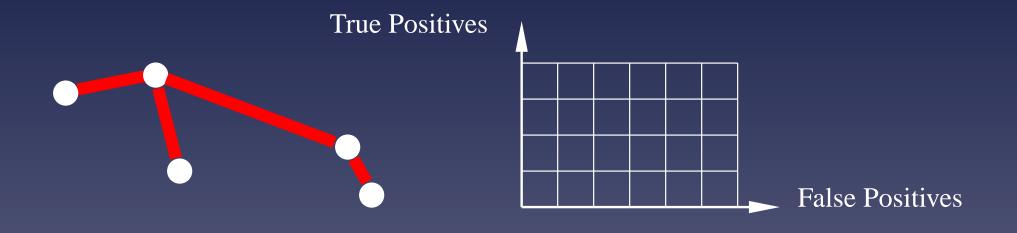


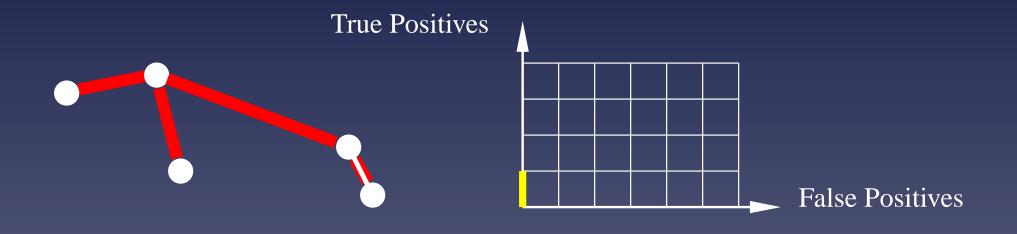


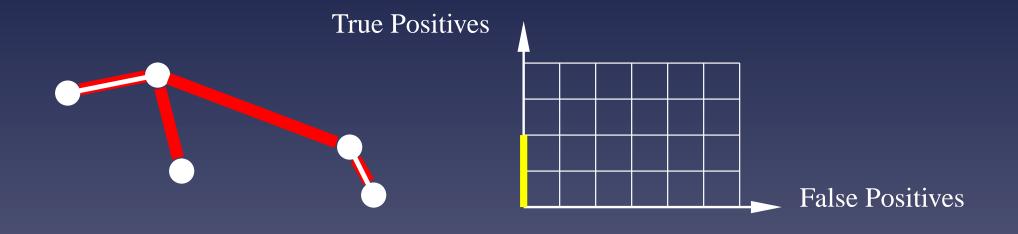


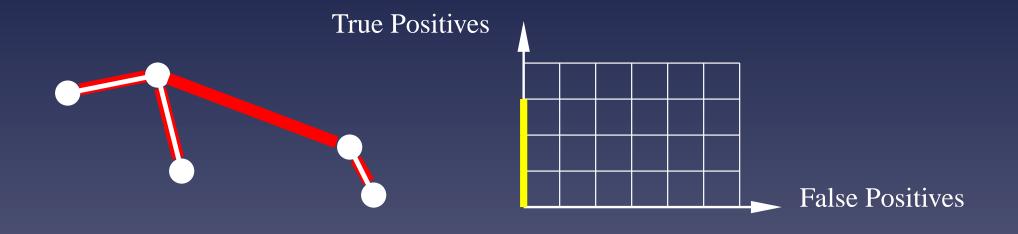


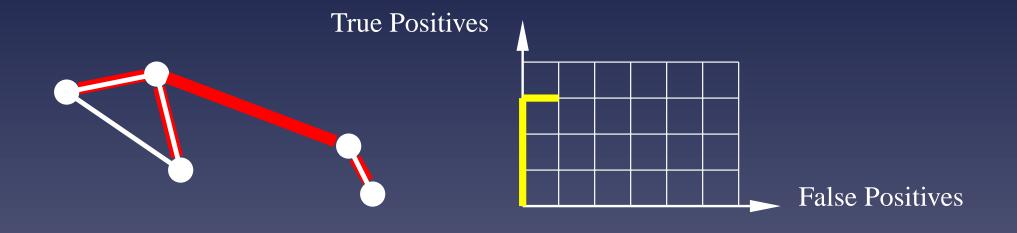


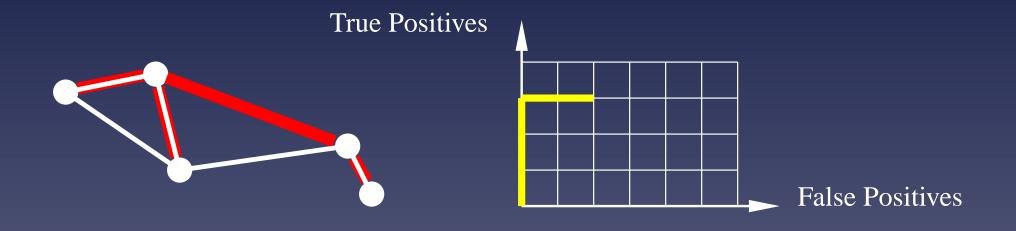


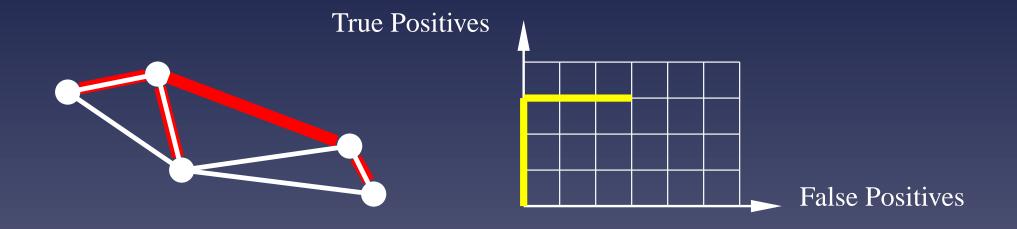


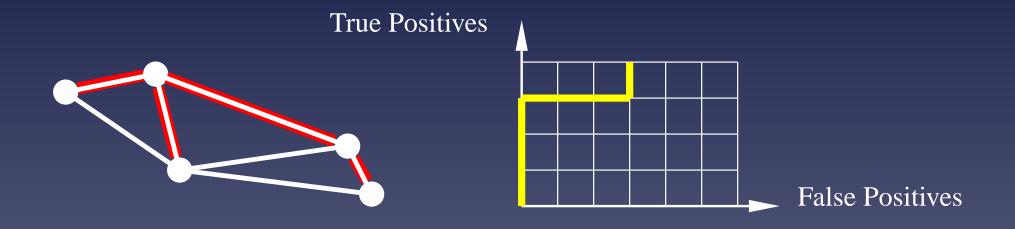


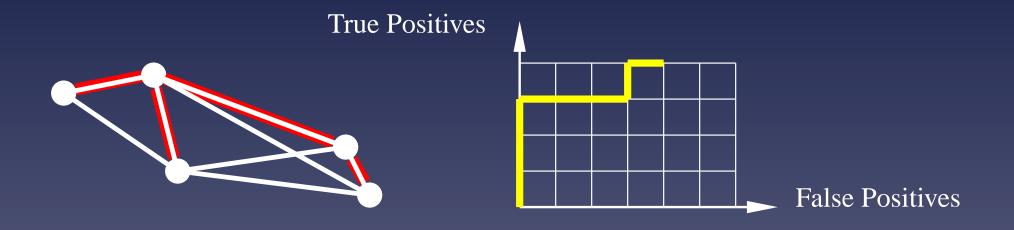


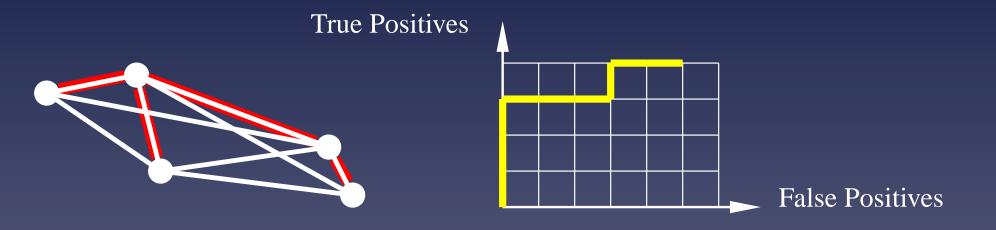


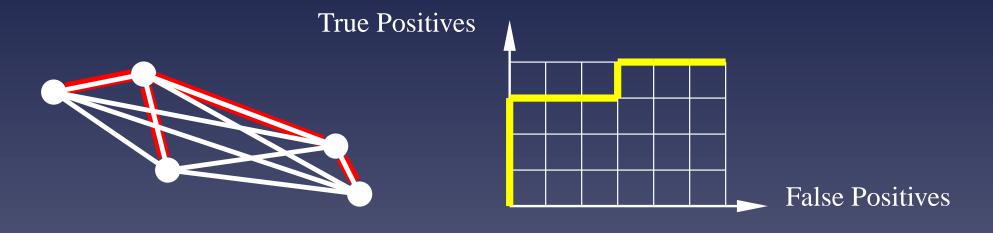






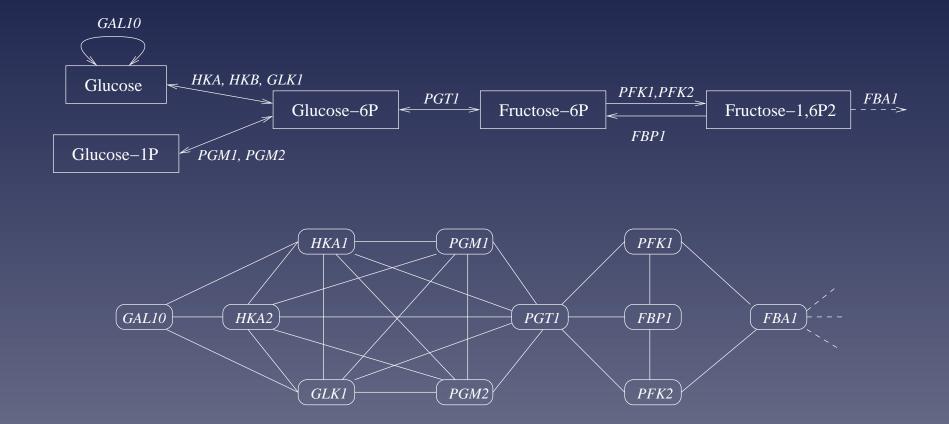






ROC = 21/24 = 87,5%

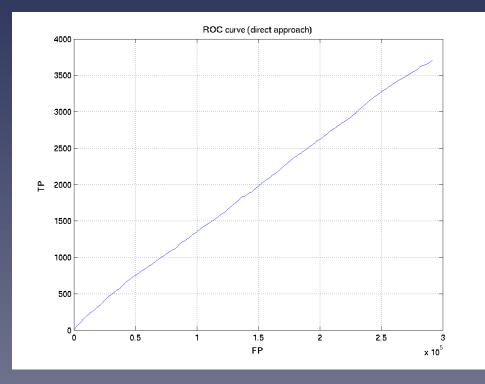
#### **Application: the metabolic gene network**



Link two genes when they can catalyze two successive reactions

#### **Evaluation of the direct approach**

The metabolic network of the yeast involves 769 genes. Each gene is represented by 157 expression measurements. (ROC=0.52)



# Shortcuts of the direct approach

• What similarity measure between profiles should be use?

#### Shortcuts of the direct approach

- What similarity measure between profiles should be use?
- Which network are we expecting to recover?

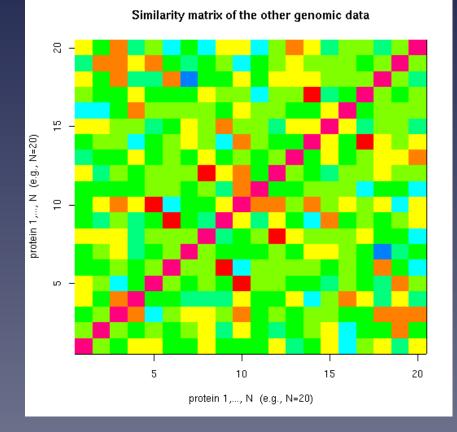
#### Shortcuts of the direct approach

- What similarity measure between profiles should be use?
- Which network are we expecting to recover?
- How to use prior knowledge about the network to be recovered?

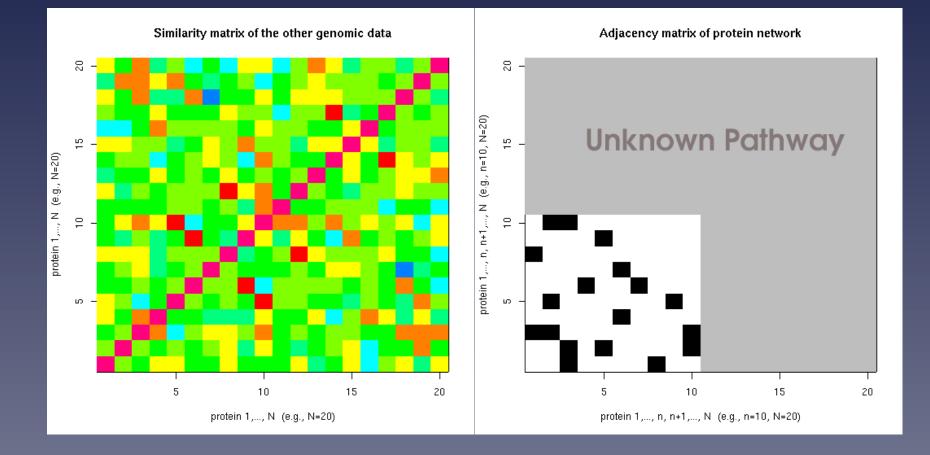
# Part 2

# Supervised network inference

# The supervised gene inference problem



# The supervised gene inference problem



## The idea in a nutshell

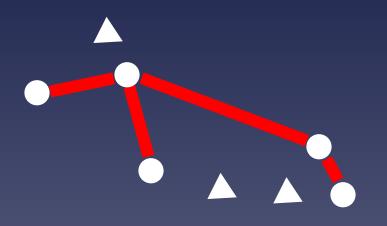
Use the known network to "learn" a more relevant measure of similarity

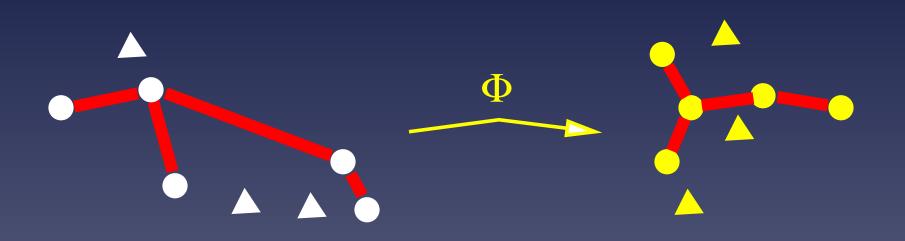
#### The idea in a nutshell

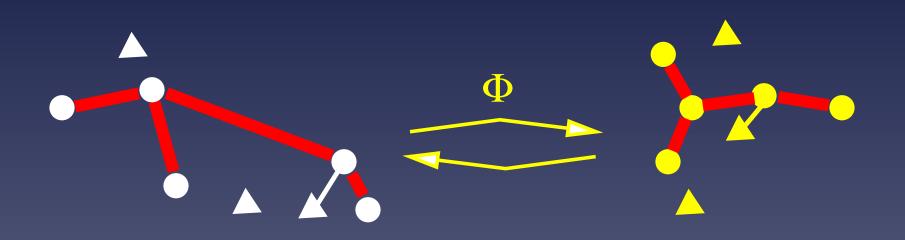
- Use the known network to "learn" a more relevant measure of similarity
- For example, map the genes expression profiles to a different space, where the natural distance better fits the known network

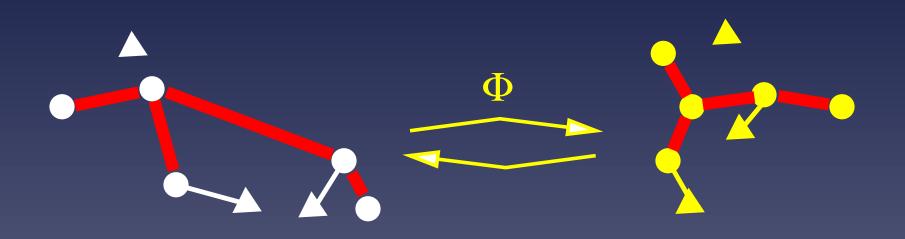
#### The idea in a nutshell

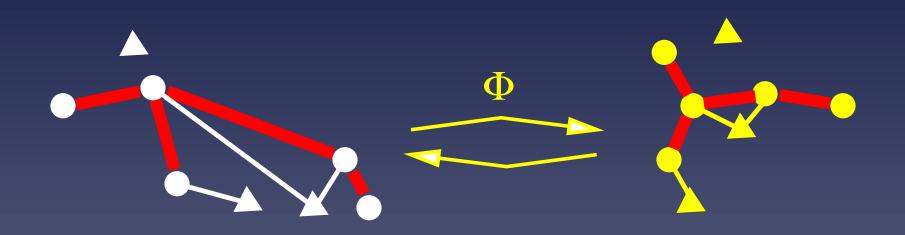
- Use the known network to "learn" a more relevant measure of similarity
- For example, map the genes expression profiles to a different space, where the natural distance better fits the known network
- Then apply the direct strategy in the second space

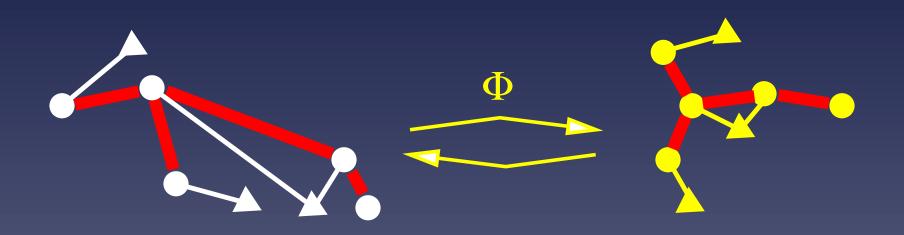


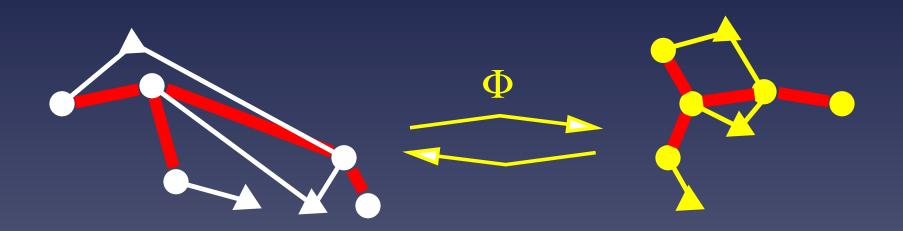












# Learning the mapping $\Phi$

• Let  $x \in \mathbb{R}^p$  be an expression profile

# Learning the mapping $\Phi$

• Let  $x \in \mathbb{R}^p$  be an expression profile

Let us consider linear mappings:

 $\Phi(x) = (f_1(x), \dots, f_d(x))' \in \mathbb{R}^d$ 

made of linear features  $f_i(x) = w_i^\top x$ 

#### Learning the mapping $\Phi$

• Let  $x \in \mathbb{R}^p$  be an expression profile

• Let us consider linear mappings:

$$\Phi(x) = (f_1(x), \dots, f_d(x))' \in \mathbb{R}^d$$

made of linear features  $f_i(x) = w_i^{\top} x$ 

 A feature f : ℝ<sup>p</sup> → ℝ is "good" if connected genes in the known network have similar value.

#### "Good" features

• A "good" feature  $f(x) = w^{\top}x$  should minimize:

$$R(f) = \frac{\sum_{i \sim j} \left( f(x_i) - f(x_j) \right)^2}{\sum_{i=1}^n f(x_i)^2},$$

• Regularisation: for statistical reasons, it is safer to minimize:

$$\min_{f(x)=w^{\top}x} \frac{\sum_{i\sim j} \left(f(x_i) - f(x_j)\right)^2 + \lambda ||w||^2}{\sum_{i=1}^n f(x_i)^2},$$

# Influence of $\lambda$

#### $ightarrow \overline{\lambda ightarrow +\infty}$ : PCA

★ Useful for noisy, high-dimensional data.

 Used in spectral clustering. The graph does not play any role (unsupervised)

#### • $\lambda \rightarrow 0$ : second smallest eigenvector of the graph

- Useful to embed the graph in a Euclidean space (used in graph partitioning)
- Sensitive to noise. Mapping of points outside of the graph unstable (overfitting)

#### **Extracting successive features**

• Successive features to form  $\Phi$  can be obtained by:

$$w_{i} = \operatorname*{arg\,min}_{w \perp \{w_{1}, \dots, w_{i-1}\}, \text{var}(f_{w})=1} \left\{ \sum_{i \sim j} \left( f_{w}(x_{i}) - f_{w}(x_{j}) \right)^{2} + \lambda ||w||^{2} \right\}$$

#### **Extracting successive features**

• Successive features to form  $\Phi$  can be obtained by:

$$w_{i} = \operatorname*{arg\,min}_{w \perp \{w_{1}, \dots, w_{i-1}\}, \text{var}(f_{w})=1} \left\{ \sum_{i \sim j} \left( f_{w}(x_{i}) - f_{w}(x_{j}) \right)^{2} + \lambda ||w||^{2} \right\}$$

• Each features satisfies  $w = \sum_i \alpha_i x_i$  (Representer theorem)

#### Solving the problem

• The problem can then be rewritten:

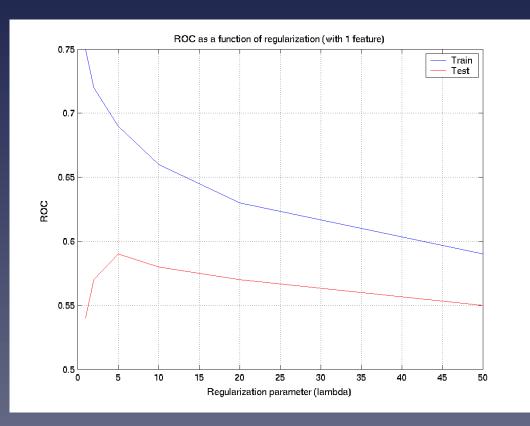
$$\alpha_{i} = \operatorname*{arg\,min}_{\alpha \in \mathbb{R}^{n}, \alpha K_{V}\alpha_{1} = \ldots = \alpha K_{V}\alpha_{i-1}} \left\{ \frac{\alpha^{\top} K_{V}LK_{V}\alpha + \lambda \alpha^{\top} K_{V}\alpha}{\alpha^{\top} K_{V}^{2}\alpha} \right\}$$

where  $K_V$  is the centered  $n \times n$  matrix of inner products and L is the Laplacian of the graph

• It is equivalent to solving the generalized eigenvalue problem:

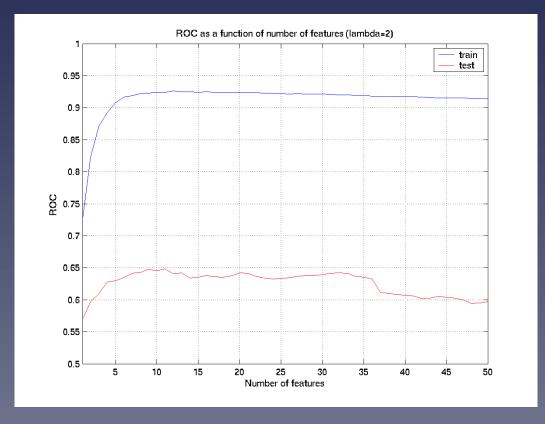
 $(LK_V + \lambda I)\alpha = \mu K_V \alpha.$ 

# Evaluation of the supervised approach: effect of $\lambda$



Metabolic network, 10-fold cross-validation, 1 feature

# Evaluation of the supervised approach: number of features ( $\lambda = 2$ )

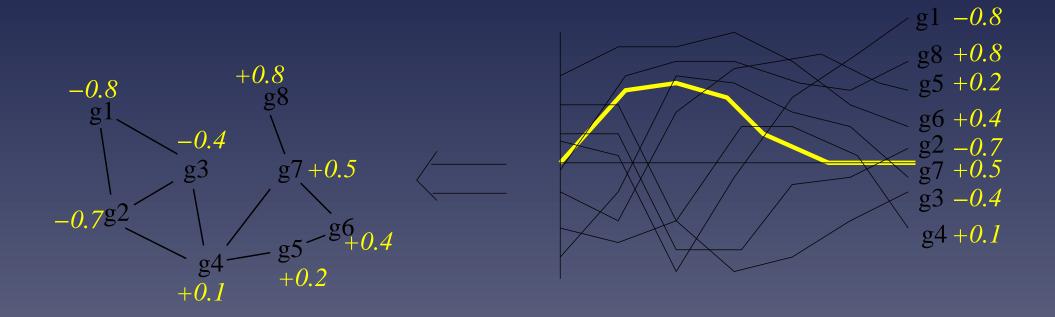


## Part 3

# Extraction of pathway activity

# The idea

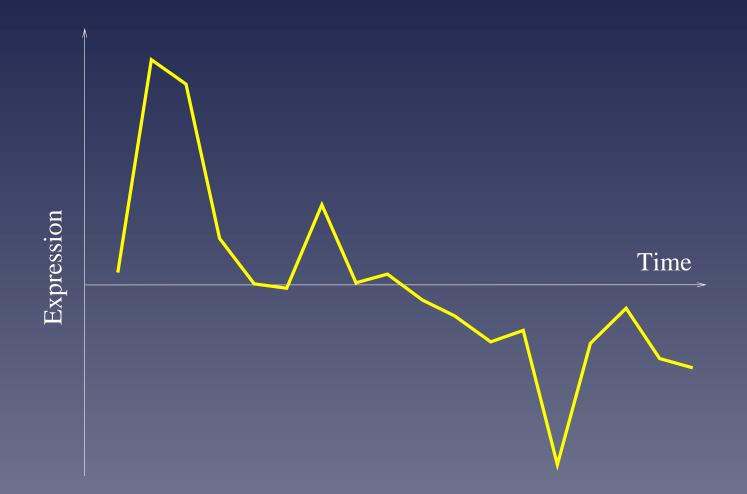
- The previous approach is a way to extract features from gene expression data:  $f(x) = w^{\top}x$ .
- These features are smooth on the graph: connected nodes tend to have similar values
- This is way to detect "correlations" between gene expression data and metabolic network : typical activity patterns of typical pathways



# Experiment

- Gene network: two genes are linked if the catalyze successive reactions in the KEGG database (669 yeast genes)
- Expression profiles: 18 time series measures for the 6,000 genes of yeast, during two cell cycles

# First pattern of expression



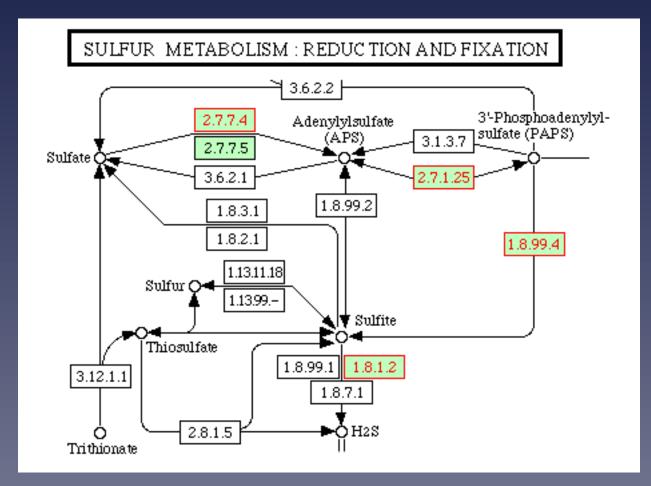
#### **Related metabolic pathways**

- 50 genes with highest  $s_2 s_1$  belong to:
- Oxidative phosphorylation (10 genes)
- Citrate cycle (7)
- Purine metabolism (6)
- Glycerolipid metabolism (6)
- Sulfur metabolism (5), etc...

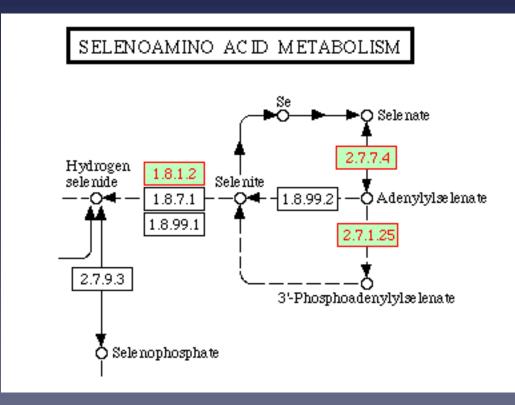
# **Related genes**



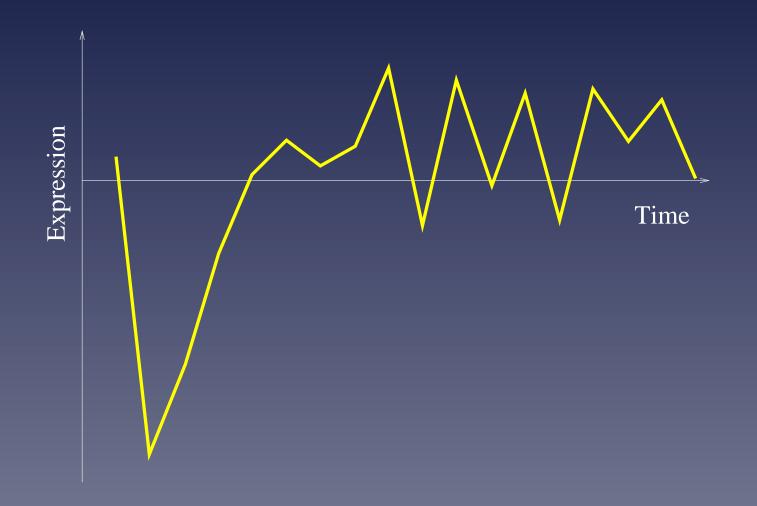
# **Related genes**



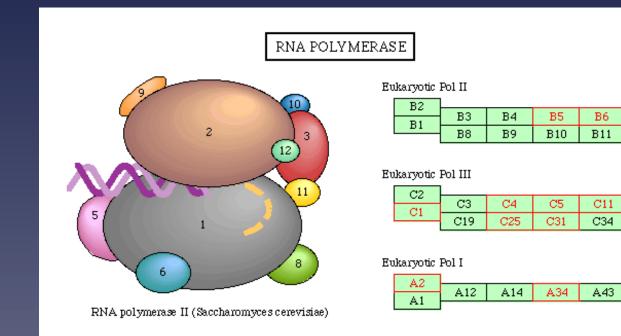
# **Related genes**



**Opposite pattern** 



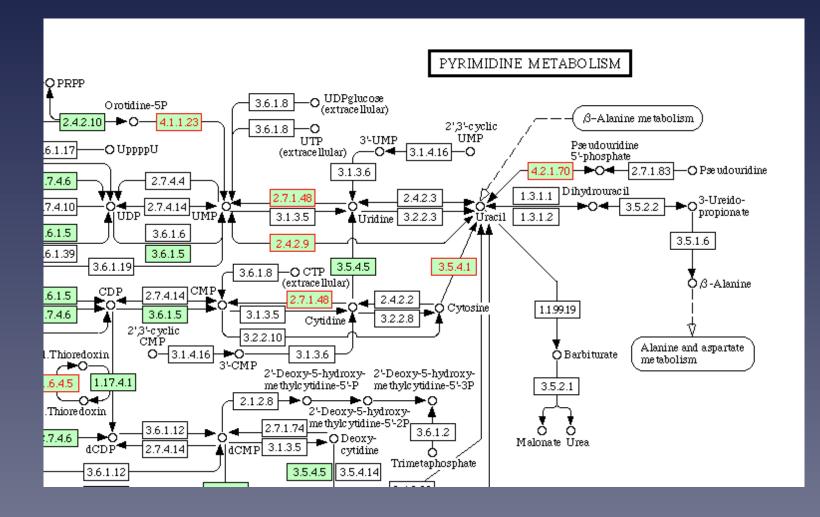
- RNA polymerase (11 genes)
- Pyrimidine metabolism (10)
- Aminoacyl-tRNA biosynthesis (7)
- Urea cycle and metabolism of amino groups (3)
- Oxidative phosphorlation (3)
- ATP synthesis(3) , etc...

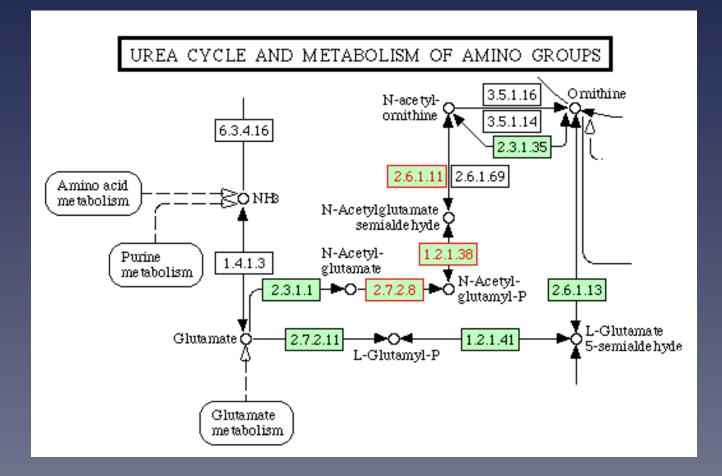


B7

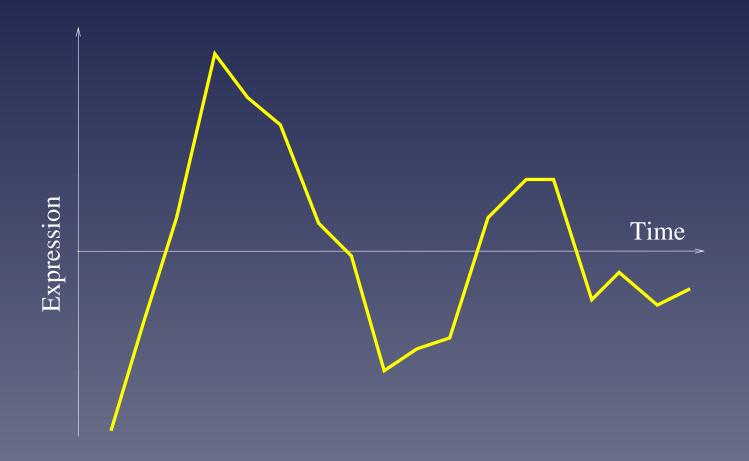
B12

A49





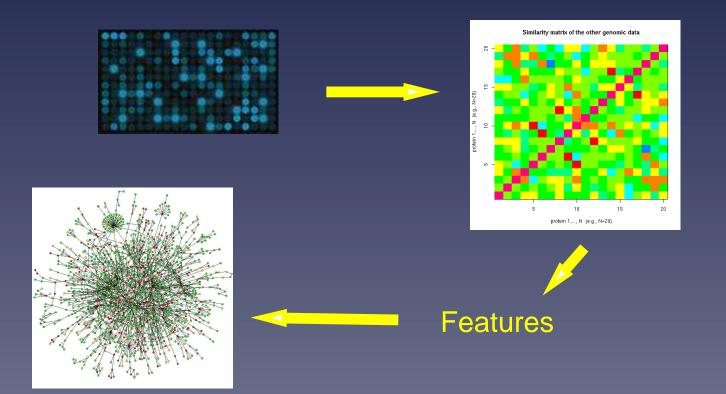
# Second pattern



#### Part 4

# Learning from several heterogeneous data

# Summary of the process



#### The "kernel trick"

• The matrix of similarity is  $K_{i,j} = x_i^{\top} x_j$ 

#### The "kernel trick"

- The matrix of similarity is  $K_{i,j} = x_i^{\top} x_j$
- However, more general measures are allowed: they simply must be symetric positive definite

#### The "kernel trick"

- The matrix of similarity is  $K_{i,j} = x_i^{\top} x_j$
- However, more general measures are allowed: they simply must be symetric positive definite
- This enables nonlinear features, as well as features from other types of data, as soon as a symetric p.d. function K(x, y) is defined

#### Kernels

Several kernels have been developed recently:

- for phylogenetic profiles (JPV. 2004)
- for gene sequences (Leslie et al. 2003, Saigo et al. 2004, ...)

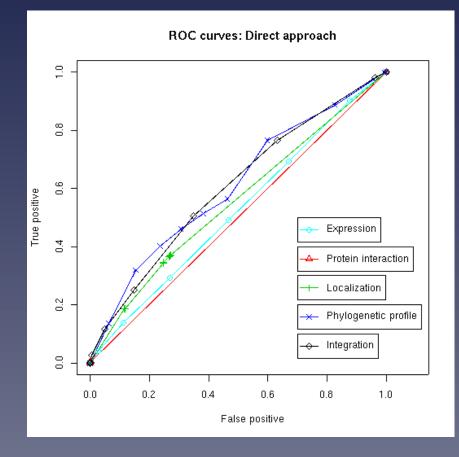
• for nodes in a network (Kondor et al. 2000)

#### Learning from heterogeneous data

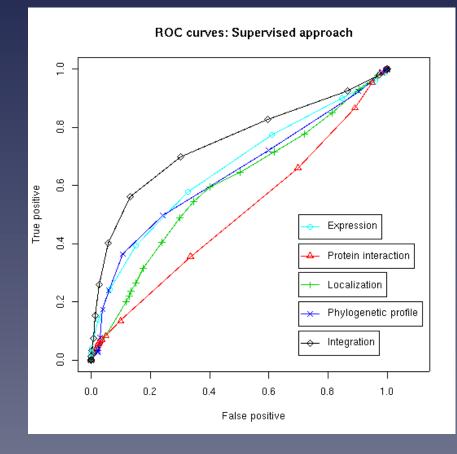
- Suppose several data are available about the genes, e.g., expression, localization, struture, predicted interaction etc...
- Each data can be represented by a positive definite similarity matrix  $K_1, \ldots, K_p$  called kernels
- Kernel can be combined by various operations, e.g., addition:

$$K = \sum_{i=1}^{p} K_i$$

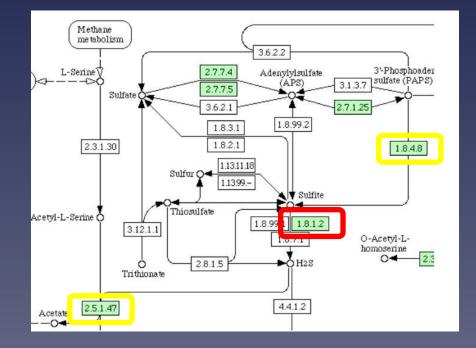
# Learning from heterogeneous data (unsupervised)



# Learning from heterogeneous data (supervised)



#### **Application: missing enzyme prediction**



The gene YJR137C was predicted in 09/2003 between EC : 1.8.4.8 and EC : 2.5.1.47. It was recently annotated as EC:1.8.1.2

# Conclusion

# Conclusion

- A new approach to feature extractions and supervised network inference, many possible variants and extensions
- Straightforward generalization to any network (e.g., interactome): the same data can be used to infer different networks
- Currently tested on characterization of tumor cells (with Institut Curie) and metabolism of P. falciparum (with Institut Pasteur).