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Motivations

• Many heterogeneous data about genes : sequences, expression,

evolution, structures, etc...

• More and more data between genes: interactome, pathways,

regulation etc...

• Goal: propose a formalism and algorithms to compare these data,

and to infer gene networks from high-throughput genomic data.
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Example 1:
Comparing gene expression and pathway databases

VS

Detect active pathways? Denoise expression data?

Denoise pathway database? Find new pathways?

Are there “correlations”?
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Example 2:
Gene network inference
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Outline

• A direct approach to network inference

• Supervised network inference

• Extraction of pathway activity

• Learning from several heterogeneous data
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Part 1

A direct approach to network
inference
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The problem
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Related approaches

• Bayesian nets for regulatory networks (Friedman et al. 2000)

• Boolean networks (Akutsu, 2000)

• Joint graph method (Marcotte et al, 1999)
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Network inference : the direct approach
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Evaluation of the performance : the ROC curve

True Positives

False Positives

ROC = 21/24 = 87, 5%
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Application: the metabolic gene network
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Link two genes when they can catalyze two successive reactions
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Evaluation of the direct approach

The metabolic network of the yeast involves 769 genes. Each gene is

represented by 157 expression measurements. (ROC=0.52)
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Shortcuts of the direct approach
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Shortcuts of the direct approach

• What similarity measure between profiles should be use?

• Which network are we expecting to recover?

• How to use prior knowledge about the network to be recovered?
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Part 2

Supervised network inference
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The supervised gene inference problem
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The supervised gene inference problem
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The idea in a nutshell

• Use the known network to “learn” a more relevant measure of

similarity

• For example, map the genes expression profiles to a different space,

where the natural distance better fits the known network

• Then apply the direct strategy in the second space
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Illustration
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Learning the mapping Φ

• Let x ∈ Rp be an expression profile

• Let us consider linear mappings:

Φ(x) = (f1(x), . . . , fd(x))′ ∈ Rd

made of linear features fi(x) = w>
i x

• A feature f : Rp → R is “good” if connected genes in the known

network have similar value.
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“Good” features

• A “good” feature f(x) = w>x should minimize:

R(f) =

∑
i∼j (f(xi)− f(xj))

2∑n
i=1 f(xi)2

,

• Regularisation: for statistical reasons, it is safer to minimize:

min
f(x)=w>x

∑
i∼j (f(xi)− f(xj))

2 + λ||w||2∑n
i=1 f(xi)2

,
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Influence of λ

• λ → +∞ : PCA

? Useful for noisy, high-dimensional data.

? Used in spectral clustering. The graph does not play any role

(unsupervised)

• λ → 0 : second smallest eigenvector of the graph

? Useful to embed the graph in a Euclidean space (used in graph

partitioning)

? Sensitive to noise. Mapping of points outside of the graph

unstable (overfitting)
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Extracting successive features

• Successive features to form Φ can be obtained by:

wi = arg min
w⊥{w1,...,wi−1},v̂ar(fw)=1

∑
i∼j

(fw(xi)− fw(xj))
2 + λ||w||2

.
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Extracting successive features

• Successive features to form Φ can be obtained by:

wi = arg min
w⊥{w1,...,wi−1},v̂ar(fw)=1

∑
i∼j

(fw(xi)− fw(xj))
2 + λ||w||2

.

• Each features satisfies w =
∑

i αixi (Representer theorem)
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Solving the problem

• The problem can then be rewritten:

αi = arg min
α∈Rn,αKV α1=...=αKV αi−1

{
α>KV LKV α + λα>KV α

α>K2
V α

}
where KV is the centered n × n matrix of inner products and L

is the Laplacian of the graph

• It is equivalent to solving the generalized eigenvalue problem:

(LKV + λI)α = µKV α.
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Evaluation of the supervised approach: effect of λ

Metabolic network, 10-fold cross-validation, 1 feature
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Evaluation of the supervised approach: number of
features (λ = 2)
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Part 3

Extraction of pathway activity
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The idea

• The previous approach is a way to extract features from gene

expression data: f(x) = w>x.

• These features are smooth on the graph: connected nodes tend to

have similar values

• This is way to detect “correlations” between gene expression data

and metabolic network : typical activity patterns of typical pathways
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Illustration
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Experiment

• Gene network: two genes are linked if the catalyze successive

reactions in the KEGG database (669 yeast genes)

• Expression profiles: 18 time series measures for the 6,000 genes of

yeast, during two cell cycles
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First pattern of expression
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Related metabolic pathways

50 genes with highest s2 − s1 belong to:

• Oxidative phosphorylation (10 genes)

• Citrate cycle (7)

• Purine metabolism (6)

• Glycerolipid metabolism (6)

• Sulfur metabolism (5), etc...
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Related genes
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Related genes
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Opposite pattern
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Related genes

• RNA polymerase (11 genes)

• Pyrimidine metabolism (10)

• Aminoacyl-tRNA biosynthesis (7)

• Urea cycle and metabolism of amino groups (3)

• Oxidative phosphorlation (3)

• ATP synthesis(3) , etc...
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Related genes



39

Related genes
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Related genes
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Second pattern
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Part 4

Learning from several
heterogeneous data
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Summary of the process
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The “kernel trick”

• The matrix of similarity is Ki,j = x>i xj
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The “kernel trick”

• The matrix of similarity is Ki,j = x>i xj

• However, more general measures are allowed: they simply must be

symetric positive definite

• This enables nonlinear features, as well as features from other types

of data, as soon as a symetric p.d. function K(x, y) is defined
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Kernels

Several kernels have been developed recently:

• for phylogenetic profiles (JPV. 2004)

• for gene sequences (Leslie et al. 2003, Saigo et al. 2004, ...)

• for nodes in a network (Kondor et al. 2000)
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Learning from heterogeneous data

• Suppose several data are available about the genes, e.g., expression,

localization, struture, predicted interaction etc...

• Each data can be represented by a positive definite similarity matrix

K1, . . . ,Kp called kernels

• Kernel can be combined by various operations, e.g., addition:

K =
p∑

i=1

Ki
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Learning from heterogeneous data (unsupervised)
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Learning from heterogeneous data (supervised)
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Application: missing enzyme prediction

The gene YJR137C was predicted in 09/2003 between EC : 1.8.4.8
and EC : 2.5.1.47. It was recently annotated as EC:1.8.1.2
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Conclusion
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Conclusion

• A new approach to feature extractions and supervised network

inference, many possible variants and extensions

• Straightforward generalization to any network (e.g., interactome):

the same data can be used to infer different networks

• Currently tested on characterization of tumor cells (with Institut

Curie) and metabolism of P. falciparum (with Institut Pasteur).


