# Analysis and inference of gene networks from genomic data



Jean-Philippe Vert

Ecole des Mines de Paris

Computational Biology group

Jean-Philippe.Vert@mines.org

Institute for Statistical Mathematics, Tokyo, Japan, November 5th, 2004.

#### **Thanks**

- Yoshihiro Yamanishi (Kyoto University)
- Computational biology at the Ecole des Mines

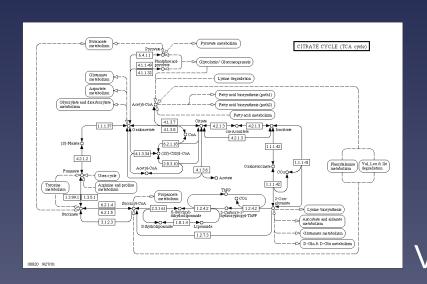


#### **Motivations**

- Many heterogeneous data about genes: sequences, expression, evolution, structures, etc...
- More and more data between genes: interactome, pathways, regulation etc...
- Goal: propose a formalism and algorithms to compare these data, and to infer gene networks from high-throughput genomic data.

#### Example 1:

#### Comparing gene expression and pathway databases





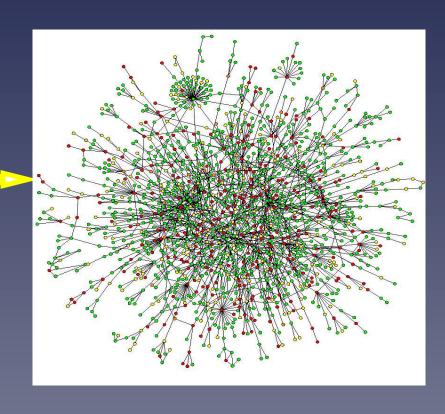
Detect active pathways? Denoise expression data?

Denoise pathway database? Find new pathways?

Are there "correlations"?

# Example 2: Gene network inference





#### **Outline**

- A direct approach to network inference
- Supervised network inference
- Extraction of pathway activity
- Learning from several heterogeneous data

#### Part 1

# A direct approach to network inference

# The problem

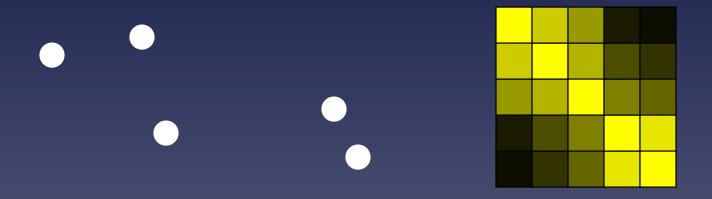




#### Related approaches

- Bayesian nets for regulatory networks (Friedman et al. 2000)
- Boolean networks (Akutsu, 2000)
- Joint graph method (Marcotte et al, 1999)







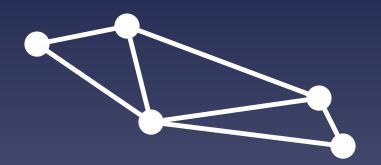


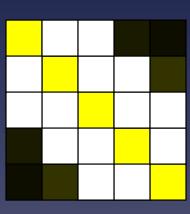


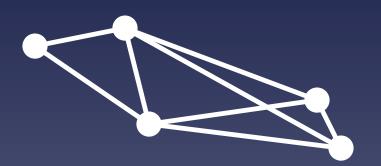


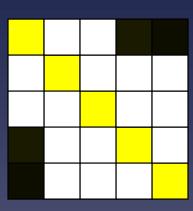


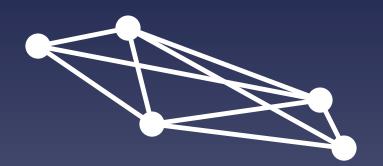


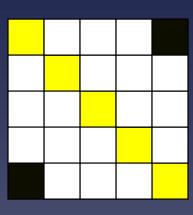




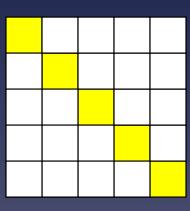


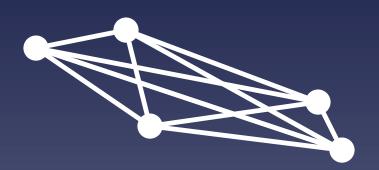


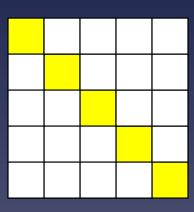


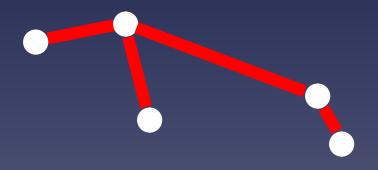


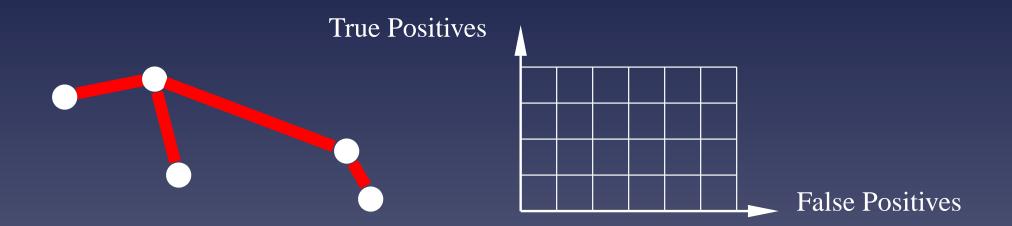


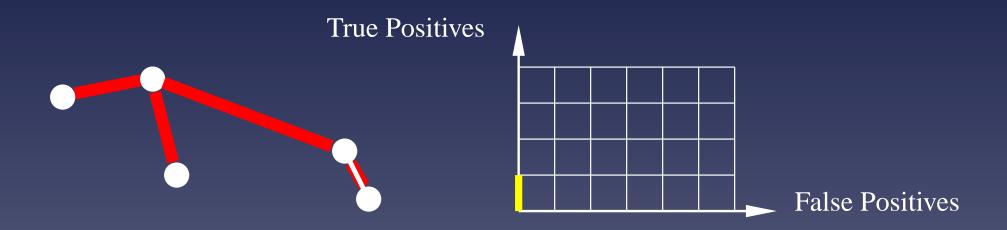


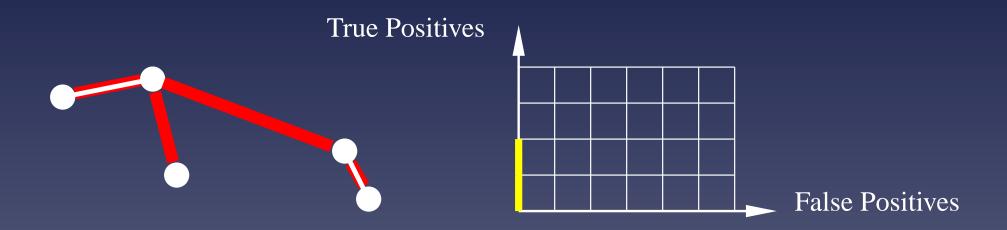


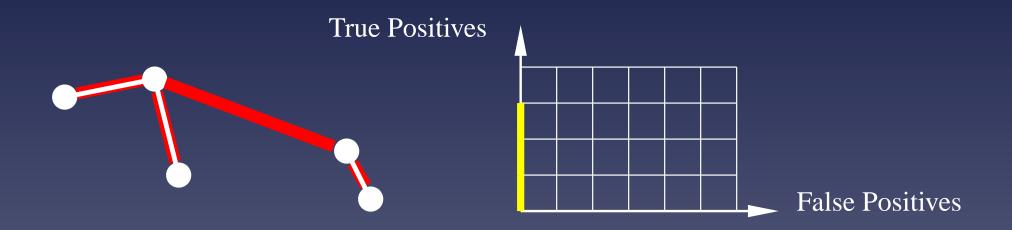


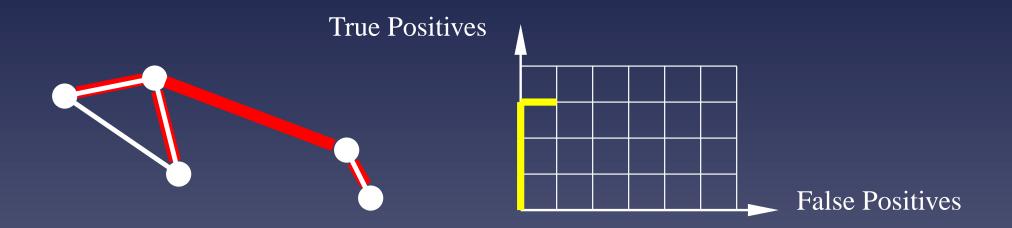


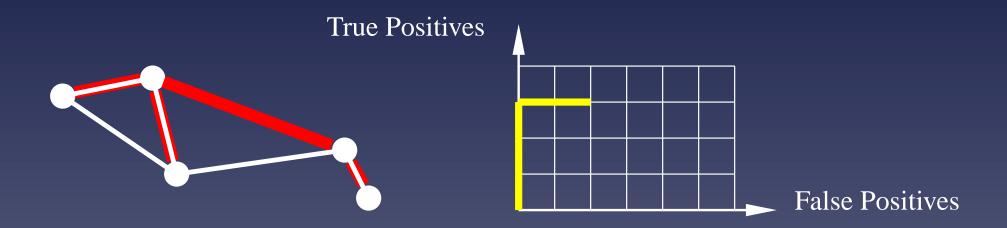


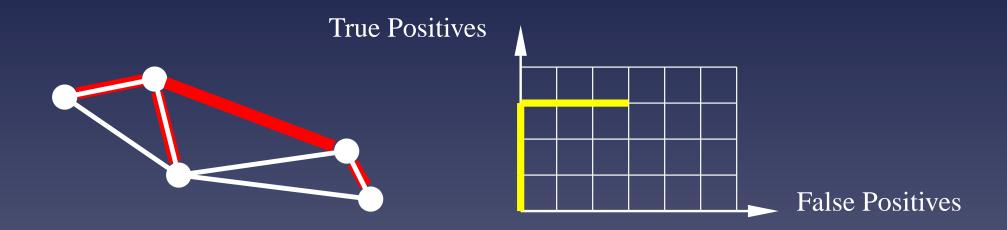


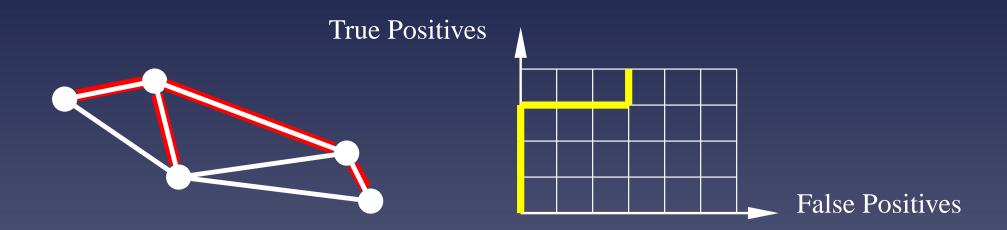


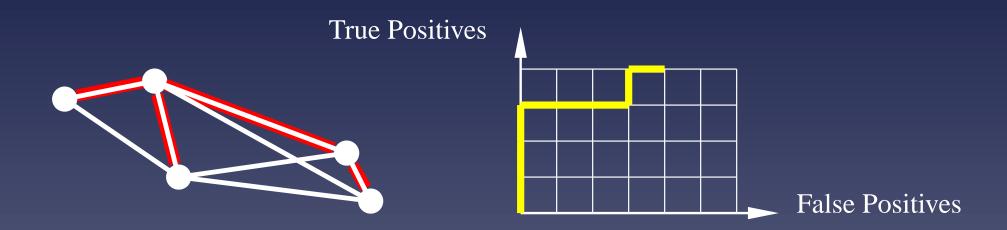


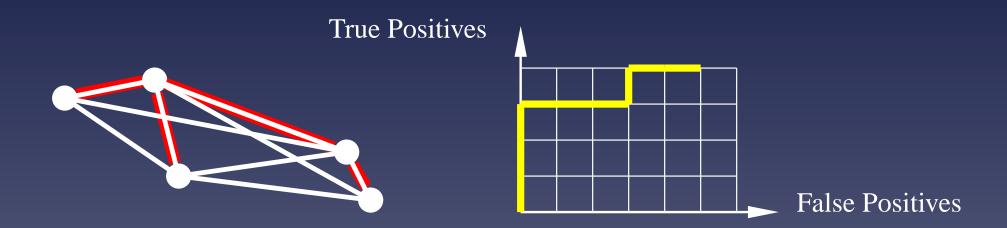


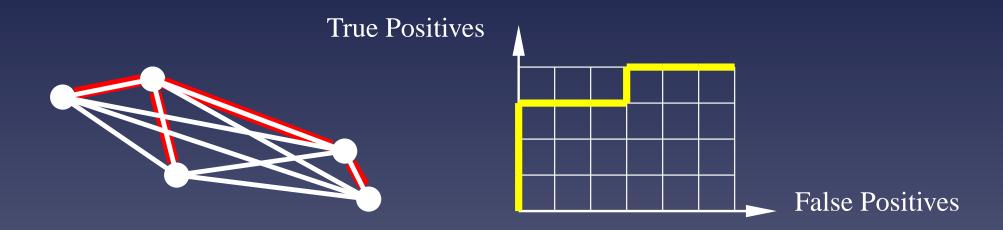






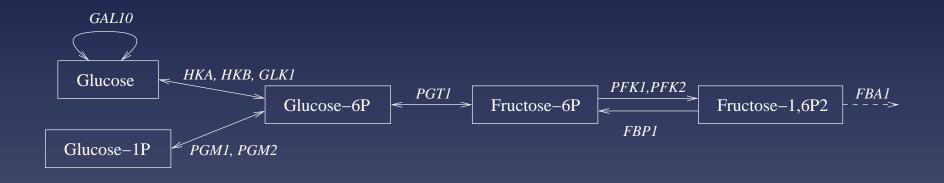


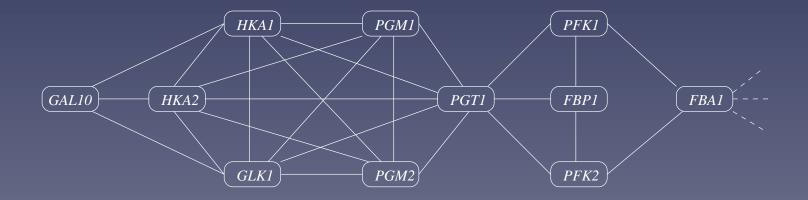




$$ROC = 21/24 = 87,5\%$$

#### Application: the metabolic gene network

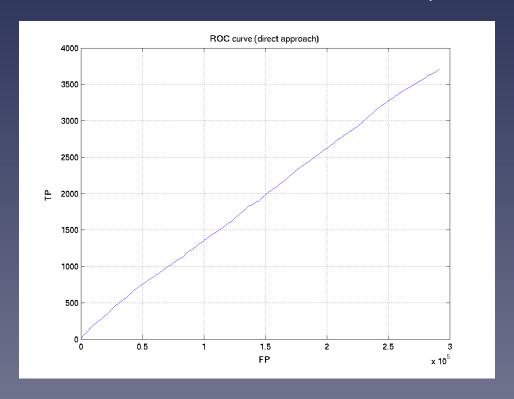




Link two genes when they can catalyze two successive reactions

#### **Evaluation of the direct approach**

The metabolic network of the yeast involves 769 genes. Each gene is represented by 157 expression measurements. (ROC=0.52)



## Shortcuts of the direct approach

• What similarity measure between profiles should be use?

## Shortcuts of the direct approach

- What similarity measure between profiles should be use?
- Which network are we expecting to recover?

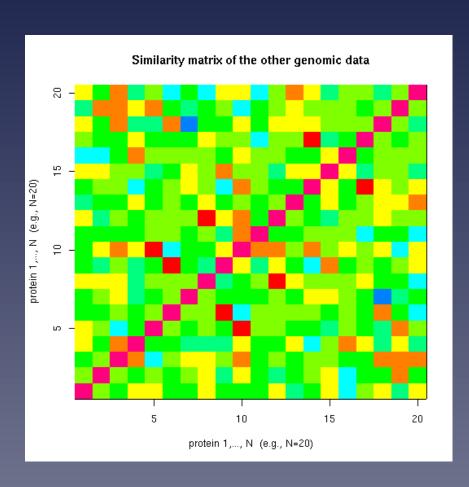
#### Shortcuts of the direct approach

- What similarity measure between profiles should be use?
- Which network are we expecting to recover?
- How to use prior knowledge about the network to be recovered?

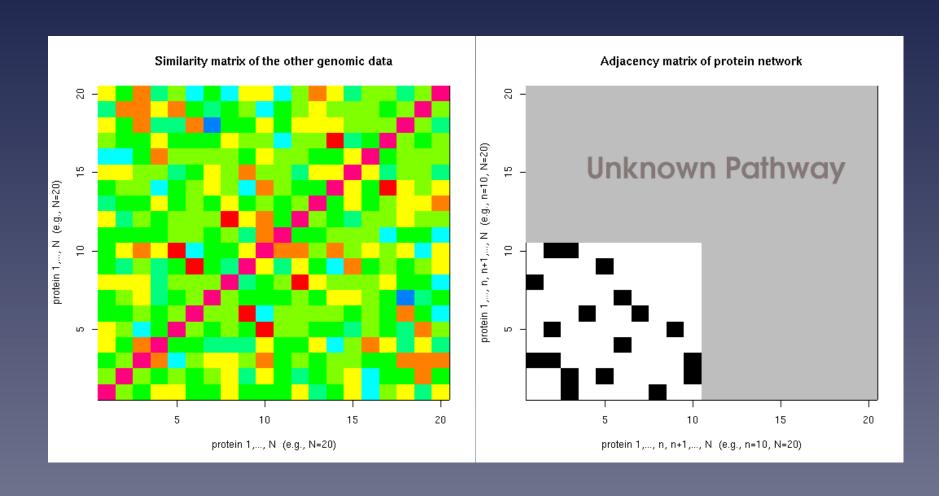
#### Part 2

## Supervised network inference

## The supervised gene inference problem



## The supervised gene inference problem



#### The idea in a nutshell

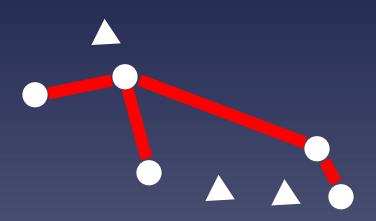
 Use the known network to "learn" a more relevant measure of similarity

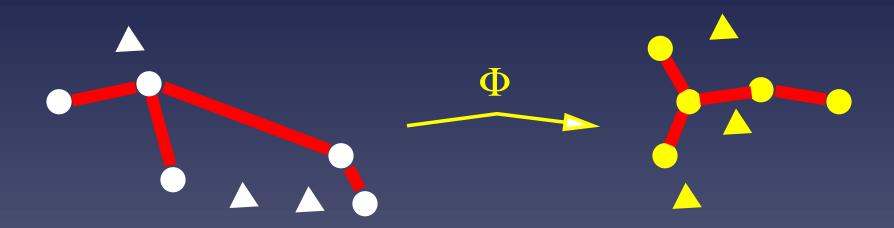
#### The idea in a nutshell

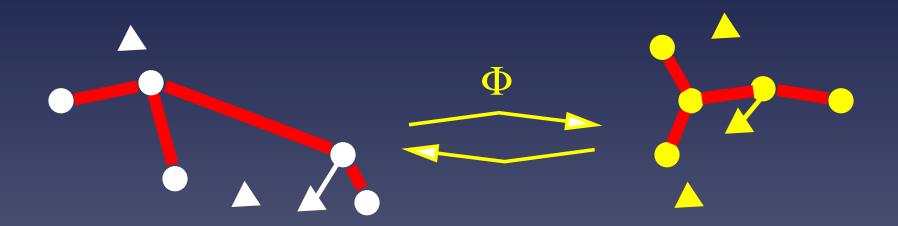
- Use the known network to "learn" a more relevant measure of similarity
- For example, map the genes expression profiles to a different space,
   where the natural distance better fits the known network

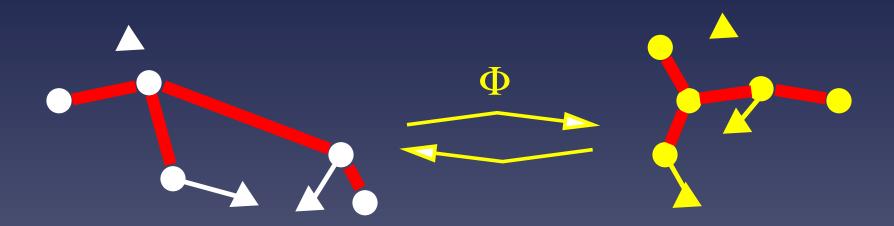
#### The idea in a nutshell

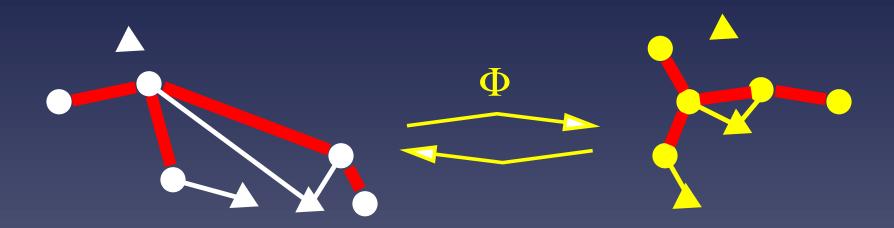
- Use the known network to "learn" a more relevant measure of similarity
- For example, map the genes expression profiles to a different space,
   where the natural distance better fits the known network
- Then apply the direct strategy in the second space

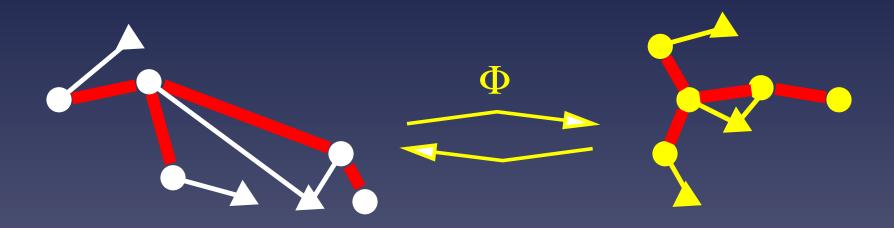


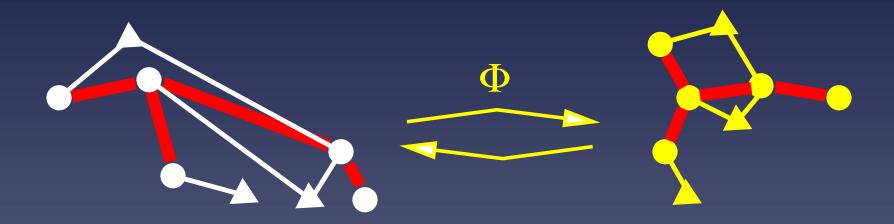












## Learning the mapping $\Phi$

• Let  $x \in \mathbb{R}^p$  be an expression profile

## Learning the mapping $\Phi$

- Let  $x \in \mathbb{R}^p$  be an expression profile
- Let us consider linear mappings:

$$\Phi(x) = (f_1(x), \dots, f_d(x))' \in \mathbb{R}^d$$

made of linear features  $f_i(x) = w_i^\top x$ 

## Learning the mapping $\Phi$

- Let  $x \in \mathbb{R}^p$  be an expression profile
- Let us consider linear mappings:

$$\Phi(x) = (f_1(x), \dots, f_d(x))' \in \mathbb{R}^d$$

made of linear features  $f_i(x) = w_i^\top x$ 

• A feature  $f: \mathbb{R}^p \to \mathbb{R}$  is "good" if connected genes in the known network have similar value.

#### "Good" features

• A "good" feature  $f(x) = w^{\top}x$  should minimize:

$$R(f) = \frac{\sum_{i \sim j} (f(x_i) - f(x_j))^2}{\sum_{i=1}^n f(x_i)^2},$$

Regularisation: for statistical reasons, it is safer to minimize:

$$\min_{f(x)=w^{\top}x} \frac{\sum_{i\sim j} (f(x_i) - f(x_j))^2 + \lambda ||w||^2}{\sum_{i=1}^n f(x_i)^2},$$

#### Influence of $\lambda$

- $\longrightarrow +\infty : \overline{\mathsf{PCA}}$ 
  - ★ Useful for noisy, high-dimensional data.
  - ★ Used in spectral clustering. The graph does not play any role (unsupervised)
- $\lambda \to 0$  : second smallest eigenvector of the graph
  - Useful to embed the graph in a Euclidean space (used in graph partitioning)
  - ★ Sensitive to noise. Mapping of points outside of the graph unstable (overfitting)

#### **Extracting successive features**

• Successive features to form  $\Phi$  can be obtained by:

$$w_i = \mathop{\arg\min}_{w \perp \{w_1, \dots, w_{i-1}\}, \hat{\text{var}}(f_w) = 1} \left\{ \sum_{i \sim j} \left( f_w(x_i) - f_w(x_j) \right)^2 + \lambda ||w||^2 \right\}.$$

#### **Extracting successive features**

• Successive features to form  $\Phi$  can be obtained by:

$$w_i = \mathop{\arg\min}_{w \perp \{w_1, \dots, w_{i-1}\}, \hat{\mathsf{var}}(f_w) = 1} \left\{ \sum_{i \sim j} \left( f_w(x_i) - f_w(x_j) \right)^2 + \lambda ||w||^2 \right\}.$$

Generalizes Principal Component Analysis (PCA)

#### **Extension to non-linear features**

Let us now only suppose that  $\mathcal{X}$  is a set endowed with a symmetric positive definite kernel  $k: \mathcal{X}^2 \to \mathbb{R}$ , i.e.,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j k(x_i, x_j) \ge 0$$

for any  $n \ge 0, (x_1, \dots, x_n) \in \mathcal{X}$  and  $(a_1, \dots, a_n) \in \mathbb{R}$  Examples:

- $k(x,y) = \exp(-||x-y||^2/(2\sigma^2))$  for  $\mathcal{X} = \mathbb{R}^d$
- string and tree kernels (Watkins 99, Haussler 99, Saigo et al. 04), phylogenetic tree kernel (Vert 02), Fisher kernel (Jaakkola et al 00), ...

#### **Features and RKHS**

- A p.d. kernel defines a Hilbert space of functions  $f: \mathcal{X} \to \mathbb{R}$  obtained by completing the span of  $\{k(x,\cdot), x \in \mathcal{X}\}$
- lacksquare The norm of a function  $f(x) = \sum_{i=1}^n c_i k(x_i, x)$  is:

$$||f||_k^2 = \sum_{i,j=1}^n c_i c_j k(x_i, x_j).$$

• This functional space  $\mathcal{H}_k$  is called the reproducing kernel Hilbert space (RKHS).

#### **Example:** Kernel PCA

For  $\mathcal{X}=\mathbb{R}^d$ , let  $k(x,y)=x\cdot y$  (linear kernel). Then the hilbert space of functions  $\mathcal{H}_k$  is the set of linear functions  $f_w(x)=w\cdot x$  with norm:

$$||f||_k^2 = ||w||^2$$

PCA can therefore be reformulated as:

$$f_{i=} \underset{f \perp \{f_1, \dots, f_{i-1}\}, \hat{\text{var}}(f)=1}{\operatorname{arg min}} ||f||_k^2.$$

#### Graph-driven feature extraction in RKHS

• For a general set  $\mathcal{X}$  endowed with a p.d. kernel k we therefore have the following graph-driven feature extractor:

$$f_i = \underset{f \perp \{f_1, \dots, f_{i-1}\}, \text{var}(f) = 1}{\operatorname{arg\,min}} \left\{ \sum_{i \sim j} \left( f(x_i) - f(x_j) \right)^2 + \lambda ||f||_k^2 \right\}.$$

 The values at the minima (the spectrum) quantifies how much the graph fits the data

#### Solving the problem

• By the representer theorem,  $f_i$  can be expanded as:

$$f_i(x) = \sum_{j=1}^n \alpha_{i,j} k(x_i, x).$$

This shows that

$$\langle f_i, f_j \rangle_k = \alpha_i^\top K \alpha_j$$

$$||f_i||_k^2 = \alpha_i^\top K \alpha_i$$
(1)

#### Solving the problem (cont.)

The problem can then be rewritten:

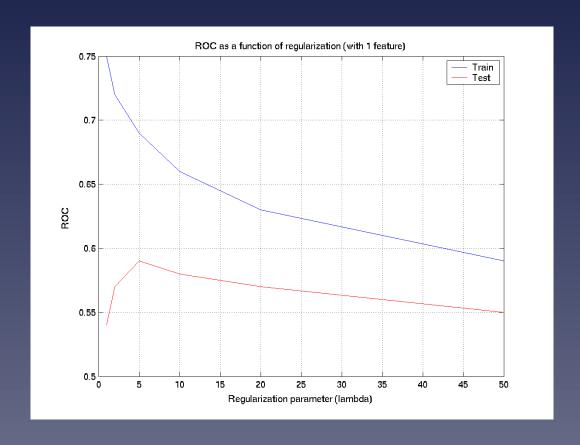
$$\alpha_i = \operatorname*{arg\,min}_{\alpha \in \mathbb{R}^n, \alpha K_V \alpha_1 = \ldots = \alpha K_V \alpha_{i-1} = 0} \left\{ \frac{\alpha^\top K_V L K_V \alpha + \lambda \alpha^\top K_V \alpha}{\alpha^\top K_V^2 \alpha} \right\}$$

where  $K_V$  is the centered  $n \times n$  Gram matrix and L is the Laplacian of the graph

• It is equivalent to solving the generalized eigenvalue problem:

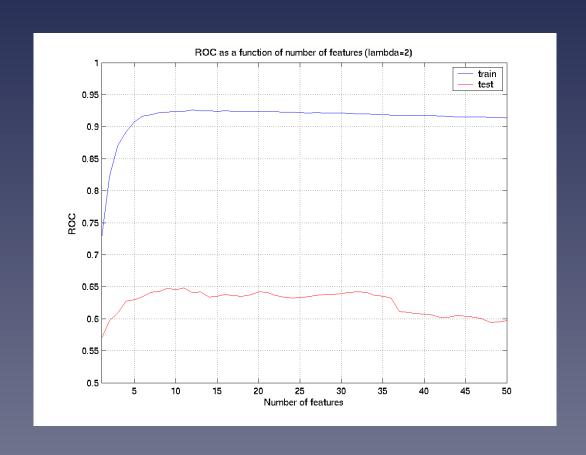
$$(LK_V + \lambda I)\alpha = \mu K_V \alpha.$$

#### Evaluation of the supervised approach: effect of $\lambda$



Metabolic network, 10-fold cross-validation, 1 feature

# Evaluation of the supervised approach: number of features ( $\lambda=2$ )

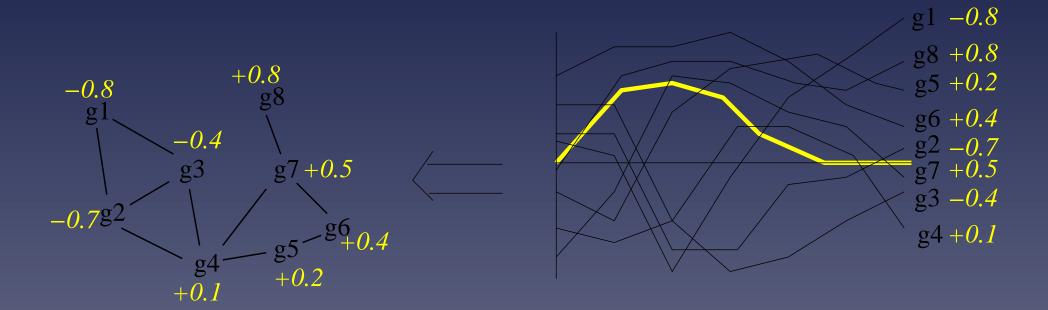


#### Part 3

# Extraction of pathway activity

#### The idea

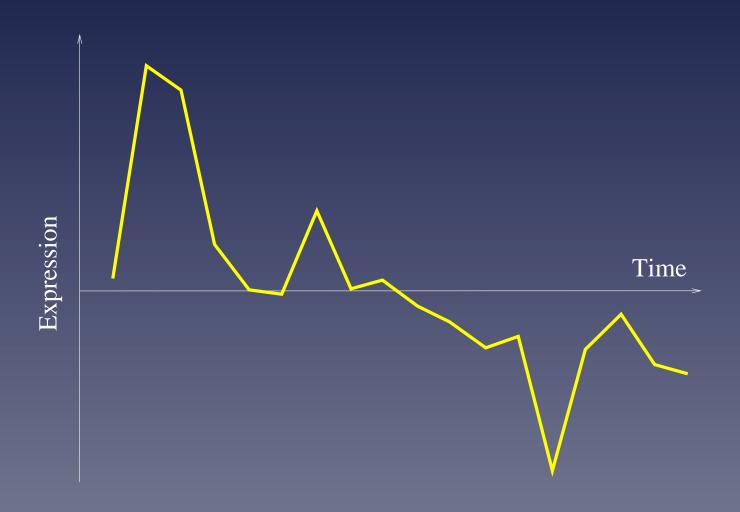
- The previous approach is a way to extract features from gene expression data:  $f(x) = w^{T}x$ .
- These features are smooth on the graph: connected nodes tend to have similar values
- This is way to detect "correlations" between gene expression data and metabolic network: typical activity patterns of typical pathways



#### **Experiment**

- Gene network: two genes are linked if the catalyze successive reactions in the KEGG database (669 yeast genes)
- Expression profiles: 18 time series measures for the 6,000 genes of yeast, during two cell cycles

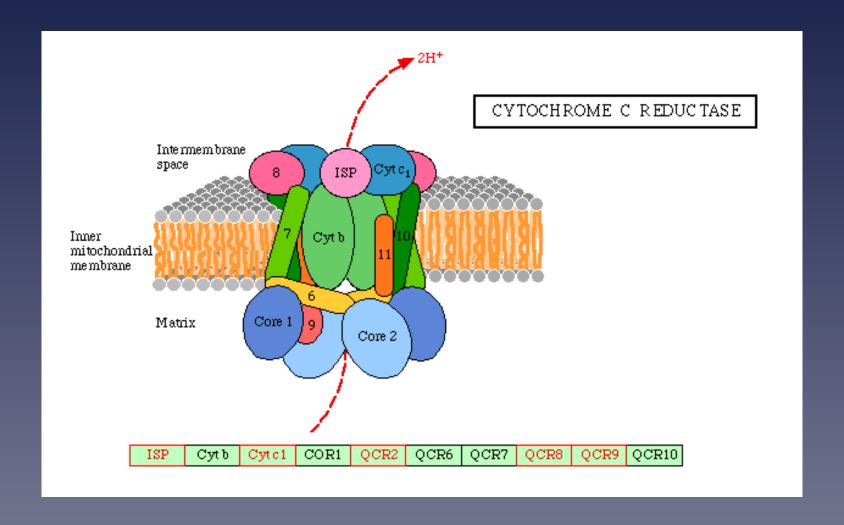
## First pattern of expression

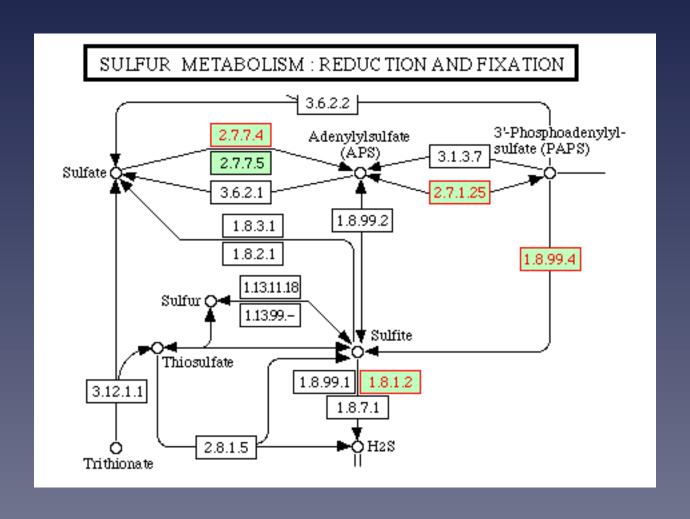


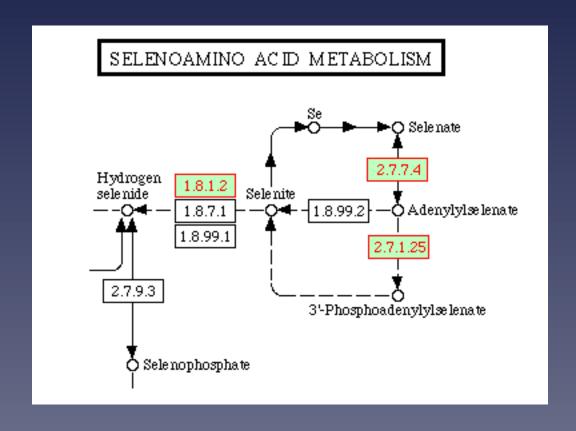
## Related metabolic pathways

50 genes with highest  $s_2 - s_1$  belong to:

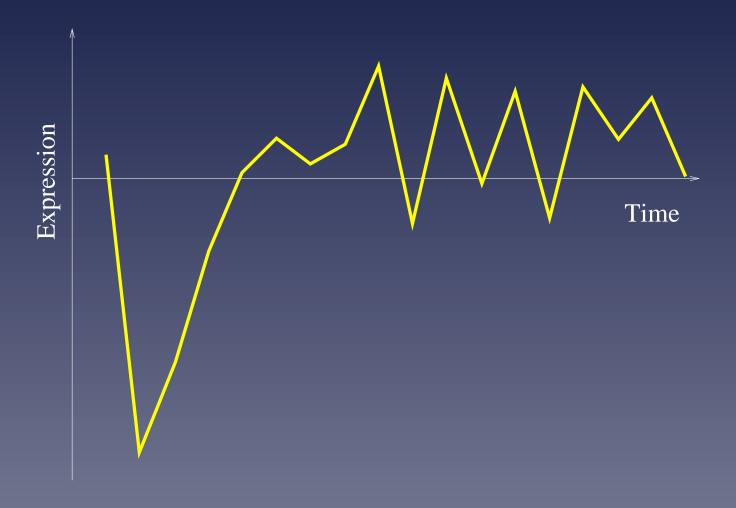
- Oxidative phosphorylation (10 genes)
- Citrate cycle (7)
- Purine metabolism (6)
- Glycerolipid metabolism (6)
- Sulfur metabolism (5), etc...



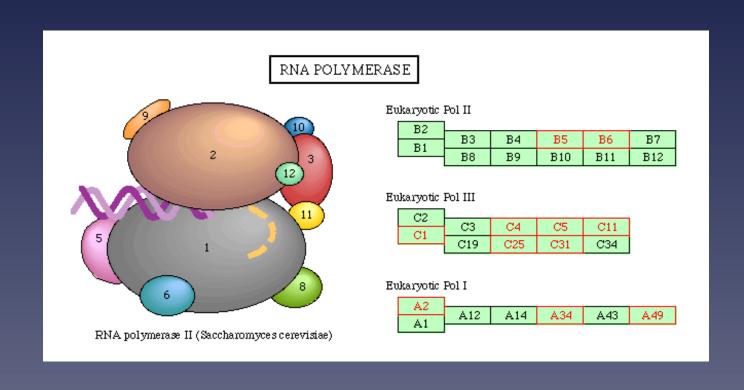


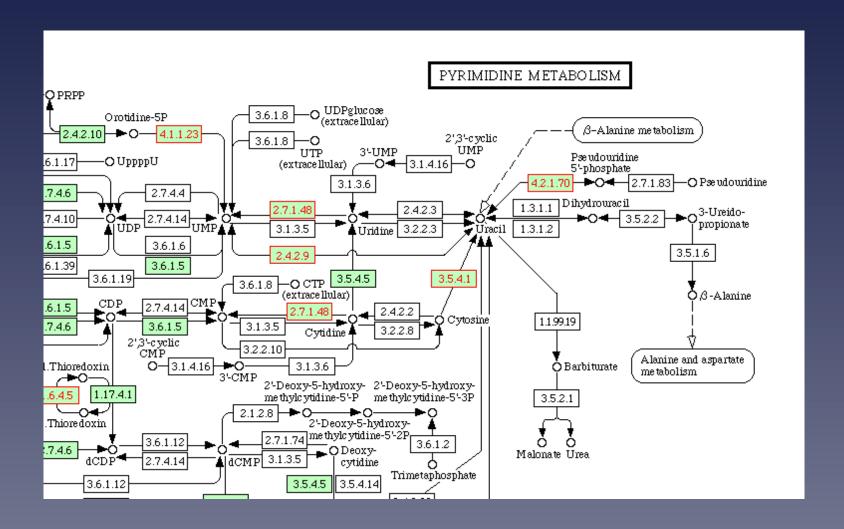


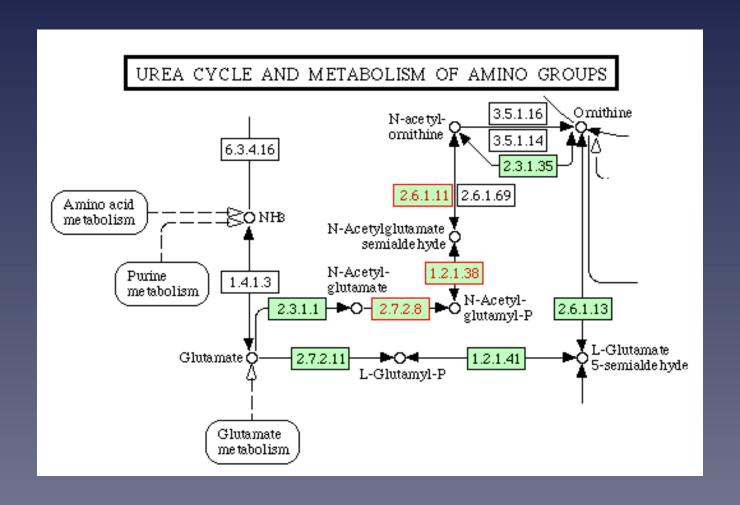
## **Opposite pattern**



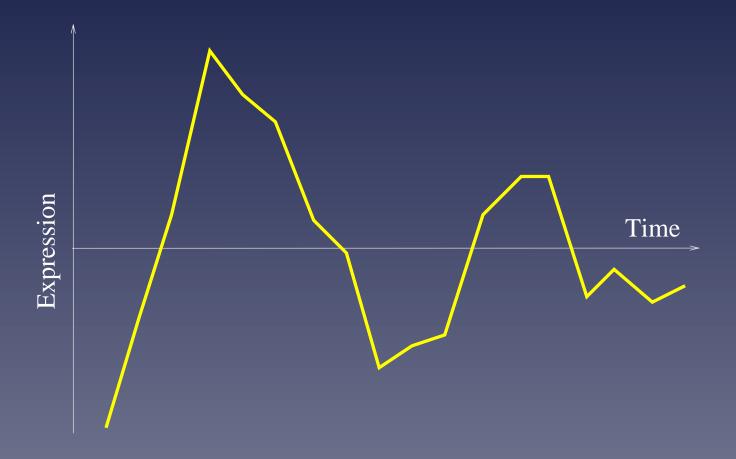
- RNA polymerase (11 genes)
- Pyrimidine metabolism (10)
- Aminoacyl-tRNA biosynthesis (7)
- Urea cycle and metabolism of amino groups (3)
- Oxidative phosphorlation (3)
- ATP synthesis(3) , etc...







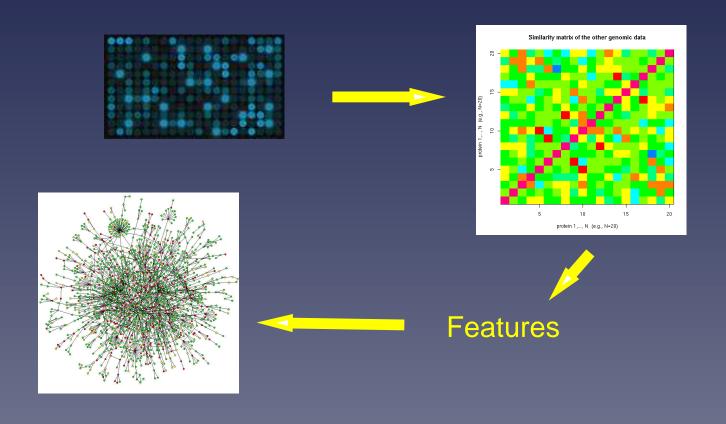
## **Second pattern**



#### Part 4

# Learning from several heterogeneous data

## **Summary of the process**



### The "kernel trick"

• The matrix of similarity is  $K_{i,j} = x_i^\top x_j$ 

#### The "kernel trick"

- The matrix of similarity is  $K_{i,j} = x_i^{\top} x_j$
- However, more general measures are allowed: they simply must be symetric positive definite

#### The "kernel trick"

- The matrix of similarity is  $K_{i,j} = x_i^{\top} x_j$
- However, more general measures are allowed: they simply must be symetric positive definite
- This enables nonlinear features, as well as features from other types of data, as soon as a symetric p.d. function K(x,y) is defined

#### Kernels

Several kernels have been developed recently:

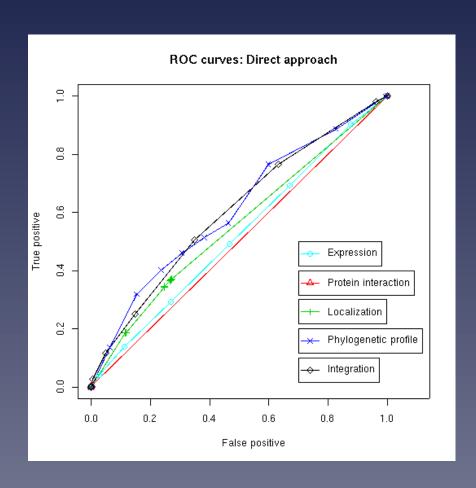
- for phylogenetic profiles (JPV. 2004)
- for gene sequences (Leslie et al. 2003, Saigo et al. 2004, ...)
- for nodes in a network (Kondor et al. 2000)

## Learning from heterogeneous data

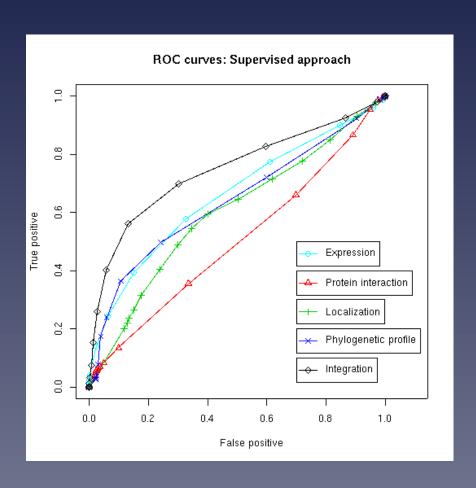
- Suppose several data are available about the genes, e.g., expression, localization, struture, predicted interaction etc...
- Each data can be represented by a positive definite similarity matrix  $K_1, \ldots, K_p$  called kernels
- Kernel can be combined by various operations, e.g., addition:

$$K = \sum_{i=1}^{p} K_i$$

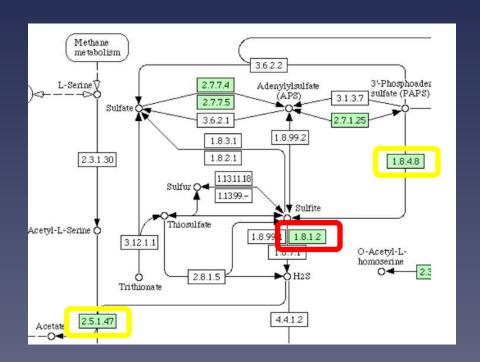
## Learning from heterogeneous data (unsupervised)



## Learning from heterogeneous data (supervised)



## Application: missing enzyme prediction



The gene YJR137C was predicted in 09/2003 between EC:1.8.4.8 and EC:2.5.1.47. It was recently annotated as EC:1.8.1.2

## Conclusion

#### Conclusion

- A new approach to feature extractions and supervised network inference, many possible variants and extensions
- Straightforward generalization to any network (e.g., interactome):
   the same data can be used to infer different networks
- Currently tested on characterization of tumor cells (with Institut Curie) and metabolism of P. falciparum (with Institut Pasteur).