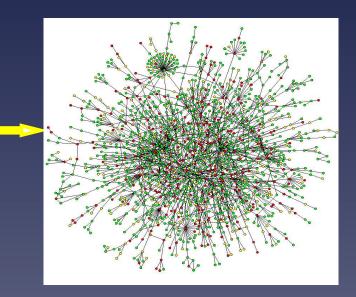
Supervised Graph Inference

Jean-Philippe Vert Ecole des Mines de Paris, Computational Biology group Jean-Philippe.Vert@mines.org

> Yoshihiro Yamanishi Kyoto University, Bioinformatics Center yoshi@kuicr.kyoto-u.ac.jp

> > NIPS, December 15, 2004.

Motivations: systems biology

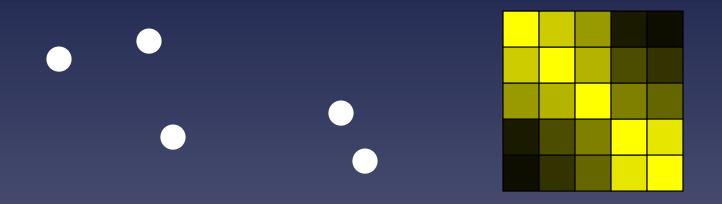


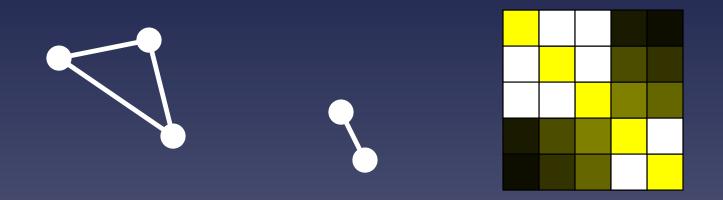
- Gene expression
- Sequence
- Protein structure
- Protein localization, etc...

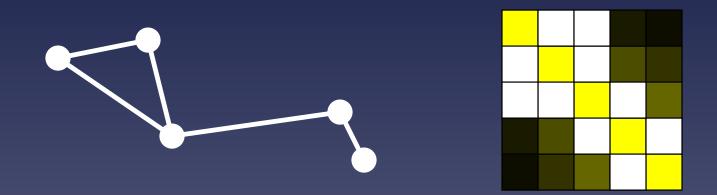
- Regulatory network
- Signaling pathways
- Metabolic pathways
- Interaction network, etc...

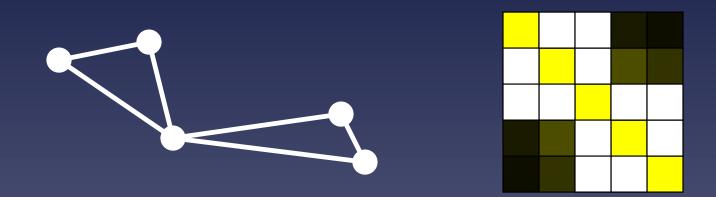
Related approaches

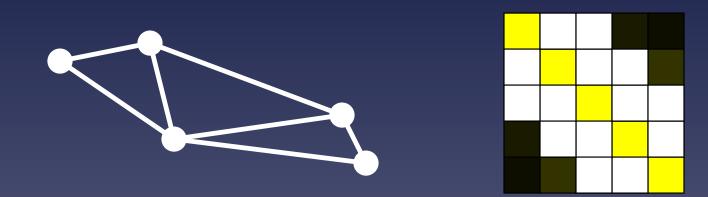
- Bayesian nets for regulatory networks (Friedman et al. 2000)
- Boolean networks (Akutsu, 2000)
- Nearest neighbors method (Marcotte et al, 1999)

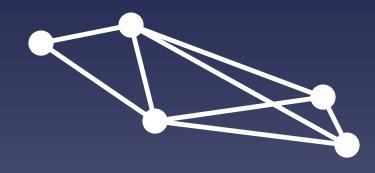


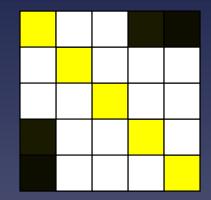


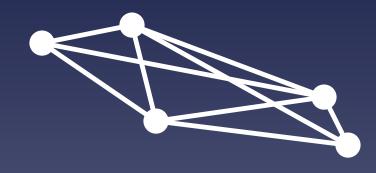


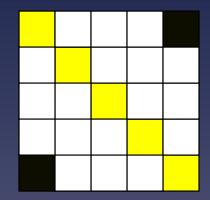


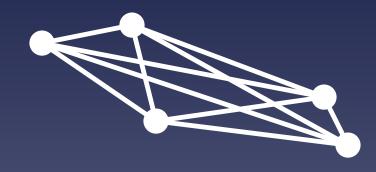


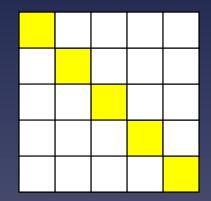


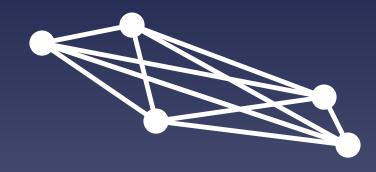


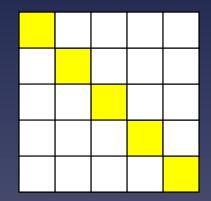






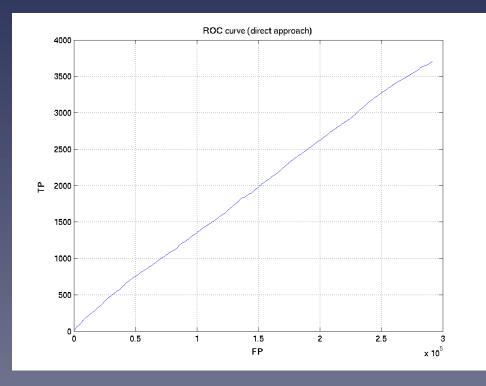






Application: metabolic network reconstruction

The metabolic network of the yeast involves 769 genes. Each gene is represented by 157 expression measurements. (ROC=0.52)

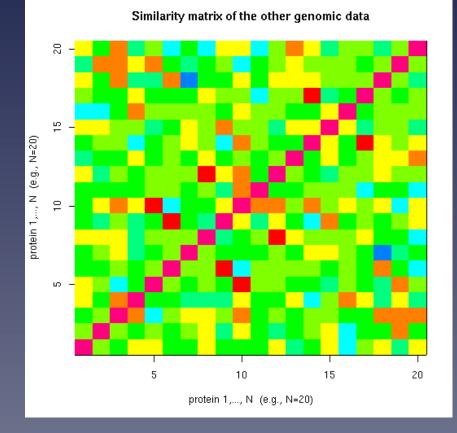


• What similarity measure between profiles should be use?

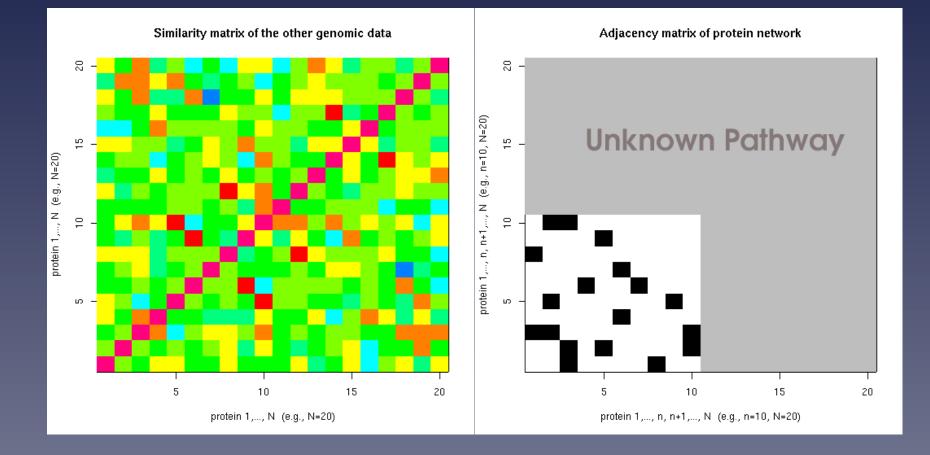
What is wrong?

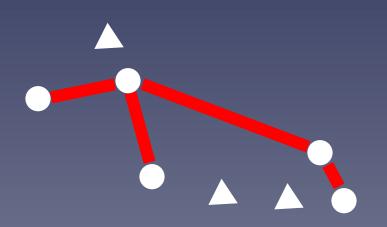
- What similarity measure between profiles should be use?
- Which network are we expecting to recover?

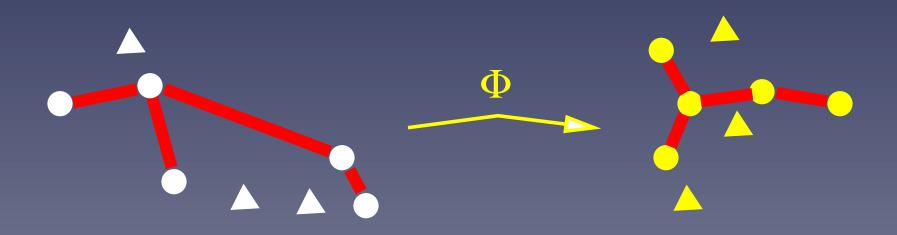
The supervised gene inference problem

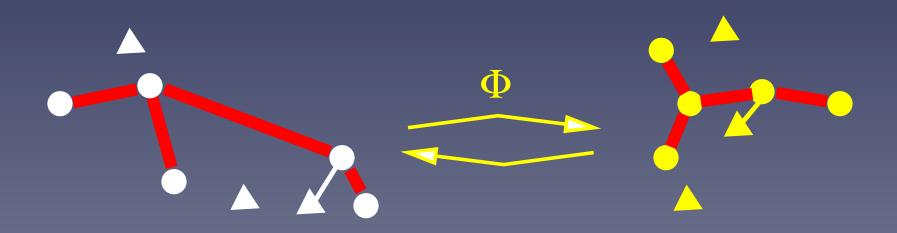


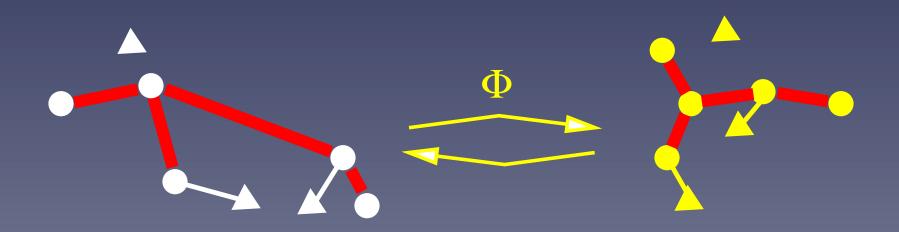
The supervised gene inference problem

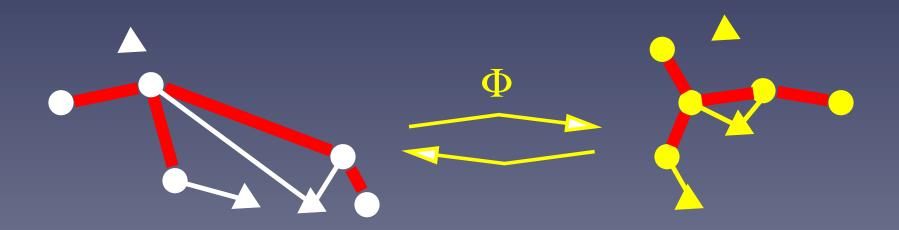


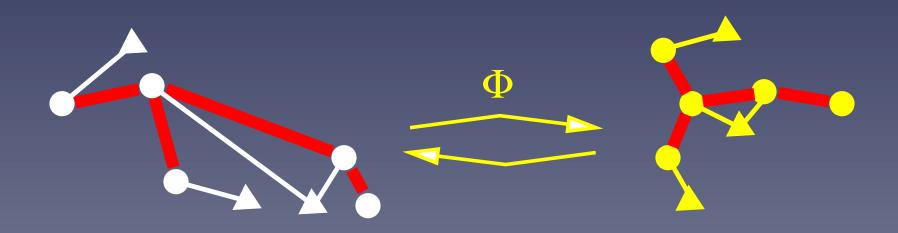


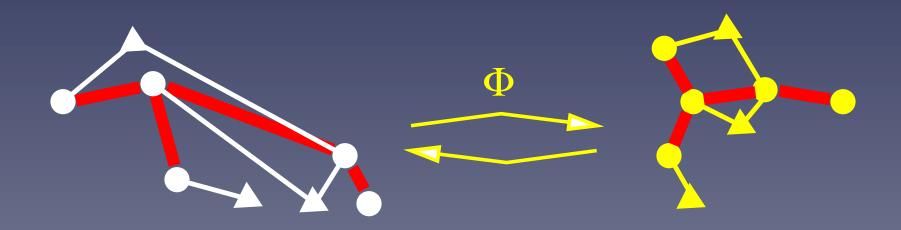












Learning the mapping Φ

• Let us consider mappings $\mathcal{X} \to \mathbb{R}^d$ (\mathcal{X} being endowed with a p.d. kernel K):

 $\Phi(x) = (f_1(x), \dots, f_d(x))' \in \mathbb{R}^d$

made of orthogonal features $f_i \in \mathcal{H}_K$ in the RKHS

Learning the mapping Φ

• Let us consider mappings $\mathcal{X} \to \mathbb{R}^d$ (\mathcal{X} being endowed with a p.d. kernel K):

 $\Phi(x) = (f_1(x), \dots, f_d(x))' \in \mathbb{R}^d$

made of orthogonal features $f_i \in \mathcal{H}_K$ in the RKHS

 A possible criterion to ensure that connected genes in the known network have similar value is to minimize:

$$\min_{f \in \mathcal{H}_K} \frac{\sum_{(i,j)\in E} \left(f(x_i) - f(x_j)\right)^2 - \sum_{(i,j)\notin E} \left(f(x_i) - f(x_j)\right)^2}{\sum_{i=1}^n f(x_i)^2}$$

Regularized risk

• If the data are centered $(\sum_i x_i = 0)$, then this is equivalent to minimizing:

$$\min_{f \in \mathcal{H}_K} \frac{\sum_{i \sim j} \left(f(x_i) - f(x_j) \right)^2}{\sum_{i=1}^n f(x_i)^2}.$$

Regularized risk

• If the data are centered $(\sum_i x_i = 0)$, then this is equivalent to minimizing:

$$\min_{f \in \mathcal{H}_K} \frac{\sum_{i \sim j} \left(f(x_i) - f(x_j) \right)^2}{\sum_{i=1}^n f(x_i)^2}.$$

 For statistical reasons (particularly in large dimension), it is safer to minimize:

$$\min_{f \in \mathcal{H}_K} \frac{\sum_{i \sim j} \left(f(x_i) - f(x_j) \right)^2 + \lambda ||f||^2}{\sum_{i=1}^n f(x_i)^2}$$

Influence of λ

• $\lambda \to +\infty$: kernel PCA

★ Useful for noisy, high-dimensional data.

 Used in spectral clustering. The graph does not play any role (unsupervised)

• $\lambda \rightarrow 0$: second smallest eigenvector of the graph

- Useful to embed the graph in a Euclidean space (used in graph partitioning)
- Sensitive to noise. Mapping of points outside of the graph unstable (overfitting)

Extracting successive features

• Successive features to form Φ can be obtained by:

$$f_{i} = \operatorname*{arg\,min}_{f \perp \{f_{1}, \dots, f_{i-1}\}} \left\{ \frac{\sum_{i \sim j} \left(f(x_{i}) - f(x_{j}) \right)^{2} + \lambda ||f||^{2}}{\sum_{i=1}^{n} f(x_{i})^{2}} \right\}$$

Extracting successive features

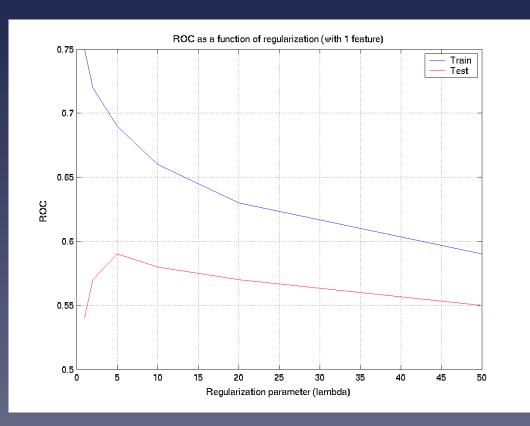
Successive features to form Φ can be obtained by:

$$f_{i} = \operatorname*{arg\,min}_{f \perp \{f_{1}, \dots, f_{i-1}\}} \left\{ \frac{\sum_{i \sim j} \left(f(x_{i}) - f(x_{j}) \right)^{2} + \lambda ||f||^{2}}{\sum_{i=1}^{n} f(x_{i})^{2}} \right\}$$

• The solution satisfies $f_i(x) = \sum_j \alpha_{i,j} K(x_j, x)$, where α_i are the successive generalized eigenvectors of

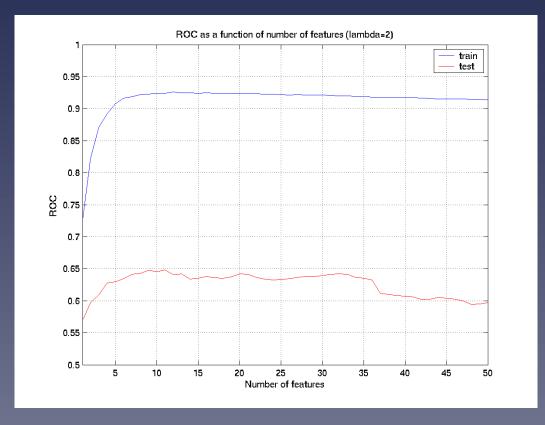
 $(LK_V + \lambda I)\alpha = \mu K_V \alpha.$

Evaluation of the supervised approach: effect of λ



Metabolic network, 10-fold cross-validation, 1 feature

Evaluation of the supervised approach: number of features ($\lambda = 2$)

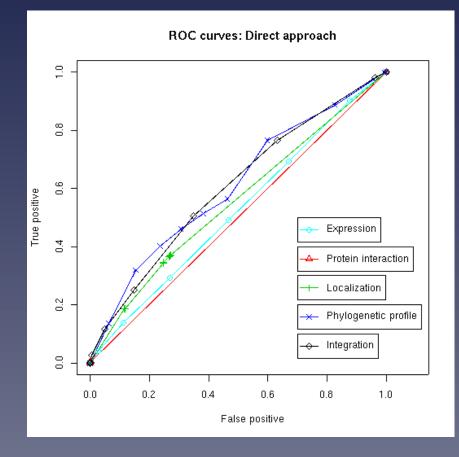


Learning from heterogeneous data

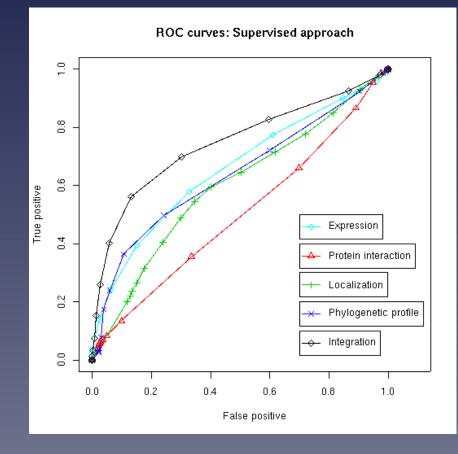
- Suppose several data are available about the genes, e.g., expression, localization, struture, predicted interaction etc...
- Each data can be represented by a positive definite similarity matrix K_1, \ldots, K_p called kernels
- Kernel can be combined by various operations, e.g., addition:

$$K = \sum_{i=1}^{p} K_i$$

Learning from heterogeneous data (unsupervised)



Learning from heterogeneous data (supervised)



1. Supervised inference is better than unsupervised

- 1. Supervised inference is better than unsupervised
- 2. Supervised graph inference can be performed by distance metric learning

- 1. Supervised inference is better than unsupervised
- 2. Supervised graph inference can be performed by distance metric learning
- 3. Data integration with kernels is simple and powerful

See you at poster 49