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The age of data in biology
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Motivations

Develop a theoretical framework and algorithms in order to

represent and integrate biological data

model and conceptualize living systems




Biological data are often

structured and heterogeneous : sequences, 3D structures, graphs,
networks, expression profiles, phylogenetic trees, SNP, ...
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What is a kernel?

Let X' be a set to be analyzed (e.g., gene sequences or protein
structures)

A kernel on X is a measure of similarity K (z,z’) between elements




Geometric interpretation as inner product

If K is a kernel on X, then X’ can be mapped to a Hilbert space H
through ® : X — H in such a way that:

V(x,x) € X?, K(x,x')=(®(x),®(x)),.




Kernel trick

Any algorithm for vectors that only involves inner products can
be performed implicity inthe feature space by remplacing the inner
product by a kernel
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Data representation with kernels
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A few kernels for biological data

Interpolated kernel for fixed-length sequences (PSB’02)
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Applications

Signal peptide detection in protein sequences
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Example 1: Phylogenetic profiles (ISMB 02)

Gene human vyeast ... HIV E. coli
YALOO01C 1 1 . 0 0
YABO002W 0 0 . 0 1
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How to compare two profiles?
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“Phylogenetic” kernel




15

Gene function prediction (ROC 50)

Functional class Naive kernel Tree kernel Difference
Amino-acid transporters 0.74 0.81 + 9%
Fermentation 0.68 0.73 + 7%
ABC transporters 0.64 0.87 + 36%
C-compound transport 0.59 0.68 + 15%

Amino-acid biosynthesis 0.37 0.46 + 24%




16

Example 2: Local alignment kernel (Bioinfo. 04)

The Smith-Waterman local alignment score:

SW(x,y) = max s(x,y,m)

is a widely-used measure of similarity between biological sequences,
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with given performance

40'

30

Empirical evaluation

SVM-LA —+—
SVM-pairwise ---x---
SVM-Mismatch ------
SVM-Fisher -8
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Comparison of heterogeneous data (NIPS’02)

Detecting pathway activity? Data and graph denoising?
Network reconstruction?
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Using kernel-CCA




21

Example (ECCB’03)

Comparison of the metabolic network vs cell cycle gene expression in
yeast




Correlated pathways
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Extensions

Feature extraction for gene supervised classification (NIPS’02)

Feature extraction for gene clusteing and operon detection
(ISMB’03)




Supervised graph inference

Bayesian networks (Friedman et al., 2001), dynamical systems (Akutsu, 2000),
nearest neigbor joinging method (Marcotte et al., 1999)...

24



25

Graph learning through metric learning
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Graph learning through metric learning
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Graph learning through metric learning
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Graph learning through metric learning




Unsupervised graph learning

ROC curves: Direct approach

O
=
o
]
-

0.6

False positive

26



Supervised graph learning

ROC curves: Supervised approach
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Future of computational biology

A strong and increasing demand to solve well-defined problems
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A challenge for the CAS-MPI Institute

Seek a fast international recognition through an original and high-
level research

Strong collaboration with the CAS biological and medical facilities,
and with the MPI excellence centers in computer science and
mathematics
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