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The age of data in biology

And many more...
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Motivations

Develop a theoretical framework and algorithms in order to

• represent and integrate biological data

• model and conceptualize living systems

• infer properties of living systems
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Biological data are often

• structured and heterogeneous : sequences, 3D structures, graphs,

networks, expression profiles, phylogenetic trees, SNP, ...
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Biological data are often

• structured and heterogeneous : sequences, 3D structures, graphs,

networks, expression profiles, phylogenetic trees, SNP, ...

• in large quantities (106 gene sequences)

• in large dimension (105 ∼ 106 spots on DNA chips)
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A possible solution: kernel methods

Kernel methods (partially) overcome these issues:

• Kernels for structured data
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A possible solution: kernel methods

Kernel methods (partially) overcome these issues:

• Kernels for structured data

• Operations on kernels to integrate heterogeneous data

• Regularisation in order to deal with large dimensions

• Statistical framework for the processing of large datasets
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What is a kernel?

• Let X be a set to be analyzed (e.g., gene sequences or protein

structures)

• A kernel on X is a measure of similarity K(x, x′) between elements

of X (that is symmetric and positive definite).

• Example: a kernel for finite-length sequences

K(aatcga, cgaagtagccc) = 0.4
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Geometric interpretation as inner product

If K is a kernel on X , then X can be mapped to a Hilbert space H
through Φ : X → H in such a way that:

∀ (x,x′) ∈ X 2, K (x,x′) = 〈Φ (x) ,Φ (x′)〉H.
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Kernel trick

• Any algorithm for vectors that only involves inner products can

be performed implicity inthe feature space by remplacing the inner

product by a kernel
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Kernel trick

• Any algorithm for vectors that only involves inner products can

be performed implicity inthe feature space by remplacing the inner

product by a kernel

• Example: Support Vector Machines (classification, regression),

clustering, PCA, ICA, CCA, logistic regression..= kernel methods

• “Simples kernels” can correspond to “complex” mappings

• Objets are not necessarily vectors!
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Data representation with kernels
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• Each data set is a matrix

• Kernel methods process these matrices
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A few kernels for biological data

• Interpolated kernel for fixed-length sequences (PSB’02)
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A few kernels for biological data

• Interpolated kernel for fixed-length sequences (PSB’02)

• Kernel for phylogenetic profiles (ISMB’02)

• Kernel for molecular 2D structures de molécules (ICML’04)

• Mutual information kernel for sequences (IJCNN’04)

• Local alignment kernel for sequences (Bioinformatics 04)

• Kernel for sets of points (NIPS’04)
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Applications

• Signal peptide detection in protein sequences
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Applications

• Signal peptide detection in protein sequences

• Gene function prediction

• Virtual screening of small molecules

• Homology detection between gene sequences
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Example 1: Phylogenetic profiles (ISMB 02)

Gene human yeast . . . HIV E. coli

YAL001C 1 1 . . . 0 0

YAB002W 0 0 . . . 0 1
... ... ... ... ... ...

• Computed in silico

• Useful to infer gene function
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How to compare two profiles?
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“Phylogenetic” kernel
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Gene function prediction (ROC 50)

Functional class Naive kernel Tree kernel Difference

Amino-acid transporters 0.74 0.81 + 9%
Fermentation 0.68 0.73 + 7%
ABC transporters 0.64 0.87 + 36%
C-compound transport 0.59 0.68 + 15%
Amino-acid biosynthesis 0.37 0.46 + 24%
Amino-acid metabolism 0.35 0.32 - 9%

Tricarboxylic-acid pathway 0.33 0.48 + 45%
Transport Facilitation 0.33 0.28 - 15%
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Example 2: Local alignment kernel (Bioinfo. 04)

• The Smith-Waterman local alignment score:

SW (x, y) = max
π∈Π(x,y)

s(x, y, π)

is a widely-used measure of similarity between biological sequences,

but... it is not a kernel

• The following local alignment kernel is valid:

K
(β)
LA(x, y) =

∑
π∈Π(x,y)

exp (βs(x, y, π)) ,
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Empirical evaluation
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Comparison of heterogeneous data (NIPS’02)

VS

Detecting pathway activity? Data and graph denoising?

Network reconstruction?
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Using kernel-CCA
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Example (ECCB’03)

Comparison of the metabolic network vs cell cycle gene expression in

yeast
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Correlated pathways
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Extensions

• Feature extraction for gene supervised classification (NIPS’02)

• Feature extraction for gene clusteing and operon detection

(ISMB’03)
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Supervised graph inference

Bayesian networks (Friedman et al., 2001), dynamical systems (Akutsu, 2000),

nearest neigbor joinging method (Marcotte et al., 1999)...
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Graph learning through metric learning
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Graph learning through metric learning

Φ



26

Unsupervised graph learning
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Supervised graph learning
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Future of computational biology

• A strong and increasing demand to solve well-defined problems
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Future of computational biology

• A strong and increasing demand to solve well-defined problems

• More and more possibilities to formulate new hypothesis/theories

from results of data mining (e.g., scale-free properties...)

• An urgent need for an adapted mathematical framework to

represent and integrate biological data (probabilistic? kernel

methods? dynamic systems? operator algebra?...)

• How to transfer fundamental findings into applications, such as

new therapies?
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A challenge for the CAS-MPI Institute

• Seek a fast international recognition through an original and high-

level research

• Strong collaboration with the CAS biological and medical facilities,

and with the MPI excellence centers in computer science and

mathematics

• Focus on a small number of well-defined applications, in

collaboration with nearby CAS laboratories

• Keep a long-term theoretical goal



30

Acknowledgements

Collaborators at Kyoto University, University of Washington, UC
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