#### **Supervised Gene Network Inference**



Jean-Philippe Vert Ecole des Mines de Paris Computational Biology group Jean-Philippe.Vert@mines.org

Journées de Statistique de la SFdS, Pau, June 6th, 2005

# Thanks

- Yoshihiro Yamanishi (Kyoto University)
- Computational biology at the Ecole des Mines



#### **Motivations: systems biology**





- Gene expression
- Sequence
- Protein structure
- Protein localization, etc...

- Regulatory network
- Signaling pathways
- Metabolic pathways
- Interaction network, etc...

#### Outline

- A direct approach to network inference
- Supervised network inference
- Extraction of pathway activity
- Learning from several heterogeneous data

#### Part 1

# A direct approach to network inference

#### **Related approaches**

- Bayesian nets for regulatory networks (Friedman et al. 2000)
- Boolean networks (Akutsu, 2000)
- Nearest neighbors method (Marcotte et al, 1999)

























































ROC = 21/24 = 87,5%

#### **Application: the metabolic gene network**



Link two genes when they can catalyze two successive reactions

#### Performance of metabolic network reconstruction

The metabolic network of the yeast involves 769 genes. Each gene is represented by 157 expression measurements. (ROC=0.52)





#### • What similarity measure between profiles should be use?

#### What is wrong?

What similarity measure between profiles should be use?

• Which network are we expecting to recover?

#### Part 2

# Supervised network inference
#### The supervised gene inference problem



### The supervised gene inference problem

















### Learning the mapping $\Phi$

• Let  $x \in \mathbb{R}^p$  be an expression profile

#### Learning the mapping $\Phi$

• Let  $x \in \mathbb{R}^p$  be an expression profile

Let us consider linear mappings:

 $\Phi(x) = (f_1(x), \dots, f_d(x))' \in \mathbb{R}^d$ 

made of linear features  $f_i(x) = w_i^{\top} x$ 

#### Learning the mapping $\Phi$

• Let  $x \in \mathbb{R}^p$  be an expression profile

• Let us consider linear mappings:

$$\Phi(x) = (f_1(x), \dots, f_d(x))' \in \mathbb{R}^d$$

made of linear features  $f_i(x) = w_i^{\top} x$ 

 A feature f : ℝ<sup>p</sup> → ℝ is "good" if connected genes in the known network have similar value.

#### "Good" features

• A "good" feature  $f(x) = w^{\top}x$  should minimize:

$$R(f) = \frac{\sum_{i \sim j} \left( f(x_i) - f(x_j) \right)^2}{\sum_{i=1}^n f(x_i)^2}$$

#### "Good" features

• A "good" feature  $f(x) = w^{\top}x$  should minimize:

$$R(f) = \frac{\sum_{i \sim j} \left( f(x_i) - f(x_j) \right)^2}{\sum_{i=1}^n f(x_i)^2}$$

• Regularisation: for statistical reasons, it is safer to minimize:

$$\min_{f(x)=w^{\top}x} \frac{\sum_{i\sim j} \left(f(x_i) - f(x_j)\right)^2 + \lambda ||w||^2}{\sum_{i=1}^n f(x_i)^2}$$

#### Influence of $\lambda$

#### $ightarrow \overline{\lambda ightarrow +\infty}$ : PCA

★ Useful for noisy, high-dimensional data.

 Used in spectral clustering. The graph does not play any role (unsupervised)

#### • $\lambda \rightarrow 0$ : second smallest eigenvector of the graph

- Useful to embed the graph in a Euclidean space (used in graph partitioning)
- Sensitive to noise. Mapping of points outside of the graph unstable (overfitting)

#### **Extracting successive features**

• Successive features to form  $\Phi$  can be obtained by:

$$w_{i} = \operatorname*{arg\,min}_{w \perp \{w_{1}, \dots, w_{i-1}\}, \text{var}(f_{w})=1} \left\{ \sum_{i \sim j} \left( f_{w}(x_{i}) - f_{w}(x_{j}) \right)^{2} + \lambda ||w||^{2} \right\}$$

#### **Extracting successive features**

• Successive features to form  $\Phi$  can be obtained by:

$$w_{i} = \operatorname*{arg\,min}_{w \perp \{w_{1}, \dots, w_{i-1}\}, \text{var}(f_{w})=1} \left\{ \sum_{i \sim j} \left( f_{w}(x_{i}) - f_{w}(x_{j}) \right)^{2} + \lambda ||w||^{2} \right\}$$

• Generalizes Principal Component Analysis (PCA)

#### **Extension to non-linear features**

- In order to allow nonlinear features, we need to replace:
  - $\star ||w||^2 \text{ by } ||f||^2$  $\star w_i \perp w_j \text{ by } f_i \perp f_j$
- We need to work in a Hilbert space of (nonlinear) functions that generalizes the linear case

#### **Positive definite kernels**

Let  $\mathcal{X}$  be a set endowed with a symmetric positive definite kernel  $k: \mathcal{X}^2 \to \mathbb{R}$ , i.e.,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j k(x_i, x_j) \ge 0$$

for any  $n \ge 0, (x_1, \dots, x_n) \in \mathcal{X}$  and  $(a_1, \dots, a_n) \in \mathbb{R}$ Examples:

- $k(x,y) = x \cdot y$  for  $\mathcal{X} = \mathbb{R}^d$
- $\bullet k(x,y) = \exp(-||x-y||^2/(2\sigma^2))$  for  $\mathcal{X} = \mathbb{R}^{d^2}$

#### **Reproducing kernel Hilbert space**

- A p.d. kernel defines a Hilbert space of functions  $f : \mathcal{X} \to \mathbb{R}$ obtained by completing the span of  $\{k(x, \cdot), x \in \mathcal{X}\}$
- The norm of a function  $f(x) = \sum_{i=1}^{n} c_i k(x_i, x)$  is:

$$||f||_{k}^{2} = \sum_{i,j=1}^{n} c_{i}c_{j}k(x_{i}, x_{j}).$$

This space is called the reproducing kernel Hilbert space (RKHS)

#### **Example: linear RKHS**

For  $\mathcal{X} = \mathbb{R}^d$  and  $k(x, y) = x \cdot y$ , we have:

• 
$$f(x) = \sum_{i=1}^{n} c_i x_i \cdot x = f_w(x)$$
 with  $w = \sum_{i=1}^{n} c_i x_i$   
•  $||f||_k^2 = \sum_{i,j=1}^{n} c_i c_j x_i \cdot x_j = ||w||^2$   
• If  $f(x) = w \cdot x$  and  $g(x) = v \cdot x$  then:

$$\langle f,g \rangle_k = w \cdot v$$

#### Graph-driven feature extraction in RKHS

 For a general set X endowed with a p.d. kernel k we therefore have the following graph-driven feature extractor:

$$f_i = \operatorname*{arg\,min}_{f \perp \{f_1, \dots, f_{i-1}\}, \text{var}(f)=1} \left\{ \sum_{i \sim j} \left( f(x_i) - f(x_j) \right)^2 + \lambda ||f||_k^2 \right\}.$$

 The values at the minima (the spectrum) quantifies how much the graph fits the data

### Solving the problem

• By the representer theorem,  $f_i$  can be expanded as:

$$f_i(x) = \sum_{j=1}^n \alpha_{i,j} k(x_i, x).$$

• This shows that

$$\langle f_i, f_j \rangle_k = \alpha_i^\top K \alpha_j$$
$$||f_i||_k^2 = \alpha_i^\top K \alpha_i$$

(1)

#### Solving the problem (cont.)

• The problem can then be rewritten:

$$\alpha_{i} = \operatorname*{arg\,min}_{\alpha \in \mathbb{R}^{n}, \alpha K_{V}\alpha_{1} = \ldots = \alpha K_{V}\alpha_{i-1} = 0} \left\{ \frac{\alpha^{\top} K_{V} L K_{V}\alpha + \lambda \alpha^{\top} K_{V}\alpha}{\alpha^{\top} K_{V}^{2} \alpha} \right\}$$

where  $K_V$  is the centered  $n \times n$  Gram matrix and L is the Laplacian of the graph

• It is equivalent to solving the generalized eigenvalue problem:

 $(LK_V + \lambda I)\alpha = \mu K_V \alpha.$ 

#### Evaluation of the supervised approach: effect of $\lambda$



Metabolic network, 10-fold cross-validation, 1 feature

# Evaluation of the supervised approach: number of features ( $\lambda = 2$ )



#### Part 3

# Extraction of pathway activity

#### The idea

- The previous approach is a way to extract features from gene expression data:  $f(x) = w^{\top}x$ .
- These features are smooth on the graph: connected nodes tend to have similar values
- This is way to detect "correlations" between gene expression data and metabolic network : typical activity patterns of typical pathways

#### Illustration



#### Experiment

- Gene network: two genes are linked if the catalyze successive reactions in the KEGG database (669 yeast genes)
- Expression profiles: 18 time series measures for the 6,000 genes of yeast, during two cell cycles

### First pattern of expression



#### **Related metabolic pathways**

- 50 genes with highest  $s_2 s_1$  belong to:
- Oxidative phosphorylation (10 genes)
- Citrate cycle (7)
- Purine metabolism (6)
- Glycerolipid metabolism (6)
- Sulfur metabolism (5), etc...

### **Related genes**



#### **Related genes**




**Opposite pattern** 



- RNA polymerase (11 genes)
- Pyrimidine metabolism (10)
- Aminoacyl-tRNA biosynthesis (7)
- Urea cycle and metabolism of amino groups (3)
- Oxidative phosphorlation (3)
- ATP synthesis(3) , etc...



B7





## Second pattern



#### Part 4

# Learning from several heterogeneous data

### Summary of the process



#### Kernels

Several similarity kernels have been developed recently:

- for phylogenetic profiles (JPV. 2004)
- for gene sequences (Leslie et al. 2003, Saigo et al. 2004, ...)

• for nodes in a network (Kondor et al. 2000)

#### Learning from heterogeneous data

- Suppose several data are available about the genes, e.g., expression, localization, struture, predicted interaction etc...
- Each data can be represented by a positive definite similarity matrix  $K_1, \ldots, K_p$
- Kernel can be combined by various operations, e.g., addition:

$$K = \sum_{i=1}^{p} K_i$$

#### Learning from heterogeneous data (unsupervised)



#### Learning from heterogeneous data (supervised)



#### **Application: missing enzyme prediction**



The gene YJR137C was predicted in 09/2003 between EC : 1.8.4.8 and EC : 2.5.1.47. It was recently annotated as EC:1.8.1.2

#### 1. Supervised inference is better than unsupervised

- 1. Supervised inference is better than unsupervised
- 2. Supervised graph inference can be performed by distance metric learning

- 1. Supervised inference is better than unsupervised
- 2. Supervised graph inference can be performed by distance metric learning
- 3. Data integration with kernels is simple and powerful

- 1. Supervised inference is better than unsupervised
- 2. Supervised graph inference can be performed by distance metric learning
- 3. Data integration with kernels is simple and powerful
- 4. Few assumptions about the network to infer (works well for the metabolic network and the protein interaction network)