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Motivations: systems biology

- Gene expression

- Sequence

- Protein structure

- Protein localization, etc...

- Regulatory network

- Signaling pathways

- Metabolic pathways

- Interaction network, etc...
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Outline

• A direct approach to network inference

• Supervised network inference

• Extraction of pathway activity

• Learning from several heterogeneous data
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Part 1

A direct approach to network
inference
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Related approaches

• Bayesian nets for regulatory networks (Friedman et al. 2000)

• Boolean networks (Akutsu, 2000)

• Nearest neighbors method (Marcotte et al, 1999)
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Example: nearest neighbors method
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Evaluation of the performance : the ROC curve

True Positives

False Positives

ROC = 21/24 = 87, 5%
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Application: the metabolic gene network

Glucose−6P
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Link two genes when they can catalyze two successive reactions
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Performance of metabolic network reconstruction

The metabolic network of the yeast involves 769 genes. Each gene is

represented by 157 expression measurements. (ROC=0.52)
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What is wrong?

• What similarity measure between profiles should be use?
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What is wrong?

• What similarity measure between profiles should be use?

• Which network are we expecting to recover?
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Part 2

Supervised network inference
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The supervised gene inference problem
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The supervised gene inference problem
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The main idea

Supervised graph inference

through
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Learning the mapping Φ

• Let x ∈ Rp be an expression profile

• Let us consider linear mappings:

Φ(x) = (f1(x), . . . , fd(x))′ ∈ Rd

made of linear features fi(x) = w>
i x

• A feature f : Rp → R is “good” if connected genes in the known

network have similar value.



16

“Good” features

• A “good” feature f(x) = w>x should minimize:

R(f) =

∑
i∼j (f(xi)− f(xj))

2∑n
i=1 f(xi)2
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“Good” features

• A “good” feature f(x) = w>x should minimize:

R(f) =

∑
i∼j (f(xi)− f(xj))

2∑n
i=1 f(xi)2

• Regularisation: for statistical reasons, it is safer to minimize:

min
f(x)=w>x

∑
i∼j (f(xi)− f(xj))

2 + λ||w||2∑n
i=1 f(xi)2
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Influence of λ

• λ → +∞ : PCA

? Useful for noisy, high-dimensional data.

? Used in spectral clustering. The graph does not play any role

(unsupervised)

• λ → 0 : second smallest eigenvector of the graph

? Useful to embed the graph in a Euclidean space (used in graph

partitioning)

? Sensitive to noise. Mapping of points outside of the graph

unstable (overfitting)
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Extracting successive features

• Successive features to form Φ can be obtained by:

wi = arg min
w⊥{w1,...,wi−1},v̂ar(fw)=1

∑
i∼j

(fw(xi)− fw(xj))
2 + λ||w||2

.
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Extracting successive features

• Successive features to form Φ can be obtained by:

wi = arg min
w⊥{w1,...,wi−1},v̂ar(fw)=1

∑
i∼j

(fw(xi)− fw(xj))
2 + λ||w||2

.

• Generalizes Principal Component Analysis (PCA)
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Extension to non-linear features

• In order to allow nonlinear features, we need to replace:

? ||w||2 by ||f ||2
? wi ⊥ wj by fi ⊥ fj

• We need to work in a Hilbert space of (nonlinear) functions that

generalizes the linear case
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Positive definite kernels

Let X be a set endowed with a symmetric positive definite kernel

k : X 2 → R, i.e.,
n∑

i=1

n∑
j=1

cicjk(xi, xj) ≥ 0

for any n ≥ 0, (x1, . . . , xn) ∈ X and (a1, . . . , an) ∈ R
Examples:

• k(x, y) = x · y for X = Rd

• k(x, y) = exp(−||x− y||2/(2σ2)) for X = Rd
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Reproducing kernel Hilbert space

• A p.d. kernel defines a Hilbert space of functions f : X → R
obtained by completing the span of {k(x, ·), x ∈ X}

• The norm of a function f(x) =
∑n

i=1 cik(xi, x) is:

||f ||2k =
n∑

i,j=1

cicjk(xi, xj).

• This space is called the reproducing kernel Hilbert space (RKHS)
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Example: linear RKHS

For X = Rd and k(x, y) = x · y, we have:

• f(x) =
∑n

i=1 cixi · x = fw(x) with w =
∑n

i=1 cixi.

• ||f ||2k =
∑n

i,j=1 cicjxi · xj = ||w||2

• If f(x) = w · x and g(x) = v · x then:

< f, g >k= w · v
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Graph-driven feature extraction in RKHS

• For a general set X endowed with a p.d. kernel k we therefore

have the following graph-driven feature extractor:

fi = arg min
f⊥{f1,...,fi−1},v̂ar(f)=1

∑
i∼j

(f(xi)− f(xj))
2 + λ||f ||2k

.

• The values at the minima (the spectrum) quantifies how much the

graph fits the data
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Solving the problem

• By the representer theorem, fi can be expanded as:

fi(x) =
n∑

j=1

αi,jk(xi, x).

• This shows that

< fi, fj >k= α>i Kαj

||fi||2k = α>i Kαi

(1)
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Solving the problem (cont.)

• The problem can then be rewritten:

αi = arg min
α∈Rn,αKV α1=...=αKV αi−1=0

{
α>KV LKV α + λα>KV α

α>K2
V α

}
where KV is the centered n×n Gram matrix and L is the Laplacian

of the graph

• It is equivalent to solving the generalized eigenvalue problem:

(LKV + λI)α = µKV α.
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Evaluation of the supervised approach: effect of λ

Metabolic network, 10-fold cross-validation, 1 feature
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Evaluation of the supervised approach: number of
features (λ = 2)



30

Part 3

Extraction of pathway activity
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The idea

• The previous approach is a way to extract features from gene

expression data: f(x) = w>x.

• These features are smooth on the graph: connected nodes tend to

have similar values

• This is way to detect “correlations” between gene expression data

and metabolic network : typical activity patterns of typical pathways
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Illustration
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Experiment

• Gene network: two genes are linked if the catalyze successive

reactions in the KEGG database (669 yeast genes)

• Expression profiles: 18 time series measures for the 6,000 genes of

yeast, during two cell cycles
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First pattern of expression
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Related metabolic pathways

50 genes with highest s2 − s1 belong to:

• Oxidative phosphorylation (10 genes)

• Citrate cycle (7)

• Purine metabolism (6)

• Glycerolipid metabolism (6)

• Sulfur metabolism (5), etc...
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Related genes
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Related genes
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Related genes
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Opposite pattern
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Related genes

• RNA polymerase (11 genes)

• Pyrimidine metabolism (10)

• Aminoacyl-tRNA biosynthesis (7)

• Urea cycle and metabolism of amino groups (3)

• Oxidative phosphorlation (3)

• ATP synthesis(3) , etc...
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Related genes
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Related genes



43

Related genes



44

Second pattern
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Part 4

Learning from several
heterogeneous data
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Summary of the process
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Kernels

Several similarity kernels have been developed recently:

• for phylogenetic profiles (JPV. 2004)

• for gene sequences (Leslie et al. 2003, Saigo et al. 2004, ...)

• for nodes in a network (Kondor et al. 2000)



48

Learning from heterogeneous data

• Suppose several data are available about the genes, e.g., expression,

localization, struture, predicted interaction etc...

• Each data can be represented by a positive definite similarity matrix

K1, . . . ,Kp

• Kernel can be combined by various operations, e.g., addition:

K =
p∑

i=1

Ki
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Learning from heterogeneous data (unsupervised)
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Learning from heterogeneous data (supervised)
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Application: missing enzyme prediction

The gene YJR137C was predicted in 09/2003 between EC : 1.8.4.8
and EC : 2.5.1.47. It was recently annotated as EC:1.8.1.2
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Conclusion
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Conclusion

1. Supervised inference is better than unsupervised

2. Supervised graph inference can be performed by distance

metric learning

3. Data integration with kernels is simple and powerful

4. Few assumptions about the network to infer (works well

for the metabolic network and the protein interaction

network)


