Analyse du transcriptome

Emmanuel Barillot, Franck Rapaport Jean-Philippe Vert et Andrei Zinovyev

Institut Curie et Ecole des Mines de Paris Journée ACI IMPBIO, Lyon, France, July 5, 2005.

- 1. Introduction à l'analyse du transcriptome
- 2. Une approche pour l'analyse de voies métaboliques
- 3. Le projet Kernelchip : cancer et régulation

Partie 1

Introduction à l'analyse du transcriptome

En bref...

- Le génome humain contient environ 25,000 gènes, codant 100,000+ protéines
- Comprendre la vie = comprendre comment ces protéines interagissent et sont régulées ?
- Les puces à ADN mesurent la quantité d'ARNm (presque les protéines...) pour tous les gènes simultanément, à un instant donné.

Les puces à ADN mesurent l'ARNm

Une puce à ADN concrètement

- Un grand nombre de molécules d'ADN fixées sur un substrat (verre, nylon, ou silicon)
- De 100 à 300,000 spots

Affymetrix GeneChip® probe array. Image courtesy of Affymetrix.

Le principe : hybridation

Exemple: hybridation comparative

Le résultat

Le transcriptome

- Le transcriptome reflète
- la source du tissue, l'organe, le type de cellules
- l'activité et l'état du tissue:
 - * état de développement, croissance, mort
 - ★ cycle cellulaire
 - ★ malade / sain
 - ★ réponse à des thérapie

Les espoirs

- découverte de cibles thérapeutiques
- diagnostic et pronostic médical
- pharmacogénomique
- biologie des systèmes etc…

Analyse typique du transcriptome

- Analyse d'image, normalisation
- Détection de gènes différentiellement exprimés
- Analyse exploratoire, clustering
- Analyse discriminante
- Reconstruction de réseaux génétiques

Analyse d'image, normalisation

Exemple d'analyse exploratoire

(Alizadeth et al., 2000)

Exemple d'analyse discriminante

(Golub et al., 1999)

Exemple de reconstruction de réseau

(Friedman et al., 2000)

Partie 2

Une approche pour l'analyse de voies métaboliques

Motivation : de nombreuses voies métaboliques sont connues

From http://www.genome.ad.jp/kegg/pathway

Les puces à ADN mesurent la dynamique de l'expression

(From Spellman et al., 1998)

Question : comment les comparer?

Détecter l'activité des voies? Trouver de nouvelles voies?

Astuce mathématique (NIPS'02)

- n gènes
- Expressions : $f = (f_1, \dots, f_n)^\top \in \mathbb{R}^n$
- Un graphe G de gènes définit une nouvelle géométrie Euclidienne sur les profiles d'expression par la formule:

 $||f||_G^2 = f^\top L_G f,$

où L_G est le Laplacien du graphe.

Laplacien du graphe

Propriétés du Laplacien

- L est une matrice symétrique, à valeur propres positives, donc ||f||_G est bien une norme Euclidienne.
- Elle vérifie:

$$|f||_{G}^{2} = f^{\top} L_{G} f = \sum_{i \sim j} \left(f(i) - f(j) \right)^{2}$$

donc f a une petite norme si f varie lentement le long des arètes du graphes.

Pourquoi $||f||_G$?

- Les voies métaboliques sont des composantes connexes du graphe
- Contrôler $||f||_G$ assure que f varie peu au sein de voies métaboliques potentielles
- Plusieurs problèmes se formulent naturellement à partir de cette norme

Exemple 1 : Régression régularisée

- Supposons qu'à chaque donnée d'expression x_i ∈ ℝⁿ soit associée une covariable y_i ∈ ℝ (âge, développement d'une tumeur, niveau de pollution, ...)
- La régression par moindre carrés classique cherche un vecteur $\hat{w} \in \mathbb{R}^n$ qui minimise:

$$\min_{w \in \mathbb{R}^n} \sum_{i=1}^p \left(w^\top x_i - y_i \right)^2.$$

Exemple 1 : Régression régularisée (cont.)

 Si on sait que w doit mettre en valeur certaines voies métaboliques, il est plus efficace de minimiser:

$$\min_{w \in \mathbb{R}^n} \sum_{i=1}^p \left(w^\top x_i - y_i \right)^2 + \lambda ||w||_G^2.$$

 Avantages : meilleures propriétés statistiques, meilleure interprétabilité

Exemple 2 : Extraction d'activité de voies

Trouver $w \in \mathbb{R}^p$ tel que $||f||_G$ soit petit, avec $f_i = w^\top x_i$.

Application (ECCB'03)

Comparaison du graphe des voies métaboliques et de données d'expression du cycle cellulaire de la levure

Exemple de gènes positivement corrélés

Autres applications

- Extraction de features pour la classification supervisée de gènes (NIPS'02)
- Extraction de features pour la classification non supervisée et la détection d'opérons dans les génomes bactériens (ISMB'03)
- Reconstruction de réseaux génétiques (ISMB'04, NIPS'04, ISMB'05).

Partie 3

Le projet Kernelchip (2004-07): cancer et régulation

Caractéristiques d'une tumeur

Modèle 1: Cancer de la vessie (carcinomes)

Modèle 1: Cancer de la vessie (cont.)

Modèle 2: Tumeur d'Ewing

Exemple de réseau de régulation

Données

• Transcriptome :

 Cancer de la vessie: 84 patients, puces Affymetrix HGU95AV2, 8,797 gènes par puce (F. Radvanyi)
Tumeur d'Ewing: 70 patients et séries temporelles, puces Affy U133, 22,000 gènes (O. Delattre)

Réseau de régulation : SHARP (97 gènes), KEGG (484 gènes)

Le projet

• Graphe dirigé, inhibition, relations indirectes \rightarrow fonctionnelle $||f||_G^2$ modifiée

- Validation de l'approche
 - → comparaison des différentes métriques
 - \rightarrow prédiction de phénotype / type de tumeur
 - \rightarrow détection de voies critiques
 - \rightarrow validation biologique

Conclusion

Conclusion

• Richesse et quantité des données du transcriptome

- Nécessité d'intégrer et de croiser ces données avec d'autres sources d'information
- Les données de graphes (interaction, régulation...) nécessitent des développements mathématiques particuliers