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Partie 1

Introduction à l’analyse du
transcriptome
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En bref...

• Le génome humain contient environ 25,000 gènes,

codant 100,000+ protéines

• Comprendre la vie = comprendre comment ces protéines

interagissent et sont régulées ?

• Les puces à ADN mesurent la quantité d’ARNm

(presque les protéines...) pour tous les gènes

simultanément, à un instant donné.



5

Les puces à ADN mesurent l’ARNm
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Une puce à ADN concrètement

• Un grand nombre de molécules d’ADN fixées sur un

substrat (verre, nylon, ou silicon)

• De 100 à 300,000 spots

Affymetrix GeneChip® probe array. Image courtesy of Affymetrix.
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Le principe : hybridation
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Exemple: hybridation comparative
review

34 nature genetics supplement • volume 21 • january 1999

The properties of genes that can be explored and exploited
using DNA microarrays are diverse. For each property we
explore, the challenge is simply to find an experimental method
that turns that property into the basis for differential fractiona-
tion of DNA or RNA sequences. This is trivial when the property
is differential expression at the mRNA level comparing the
relative abundance of mRNA from each gene is simply a matter
of measuring the differential hybridization to a DNA microarray
of fluorescently labelled cDNAs prepared from two mRNA sam-
ples.Other properties require less direct approaches5,14–17. We
have found, however, that many of the most important attributes
of genes, ranging from their transcription and translation, to the
subcellular localization of their products, to their genotype, to
their mutant phenotypes, can be studied conveniently and eco-
nomically on a genome-wide basis using DNA microarrays.

Fast, cheap and easy to control
Several features of DNA microarray technology make it particu-
larly well suited to exploratory research. (i) It is (relatively) cheap:
the capital cost for building both an arrayer and scanner is now
less than $60,000, and the marginal cost per copy of the yeast
genome microarray is currently about $20. Ongoing development
efforts in academic and commercial labs and competition among
commercial suppliers should continue to bring the cost down.
Thus, if we are curious about a process, or a mutant phenotype,
we can easily just ‘take a look’ without agonizing over cost. (ii) It is
flexible and universal: as we continue to learn more about addi-
tional genomes, we need to be able to convert the information
into tools for exploration quickly and inexpensively. In addition

to more than a thousand arrays of the complete yeast genome, we
have already printed hundreds of copies each of arrays of more
than 95% of all the predicted genes of Mycobacterium tuberculosis,
all the predicted genes of Escherichia coli, 3,000 Drosophila
melanogaster genes, thousands of C. elegans genes, over 14,000
human genes, all cytomegalovirus genes and over 3,000 Plasmod-
ium falciparum genes (unpublished data). (iii) It is fast: the total
time currently required to print 150 copies of an array of 12,000
genes is now about a day. (iv) It is user-friendly: the convenient,
solid, open format of the microscope slide, the non-radioactive,
non-toxic, low-volume (10 µl) hybridization solution and the
comforting knowledge that the arrays are cheap and easily
replaced all make everyone using the system feel comfortable per-
forming the exploratory, adventurous experiments that we think
are called for in this phase of the genome project.

Using DNA microarrays to study gene expression
on a genomic scale
The study of gene expression on a genomic scale is the most obvi-
ous opportunity made possible by complete genome sequences
of the model organisms, and experimentally the most straight-
forward. Four characteristics of the regulation of gene expression
at the level of transcript abundance account for the great value
and appeal of genome-wide surveys of transcript levels. First, it is
eminently feasibleDNA microarrays make it easy to measure
the transcripts for every gene at once (much as we might wish to
be able to measure the abundance of the final products of every
gene, or better still the biochemical activity of the products of
every gene, there is no practical generic tool for doing so…yet).
The second reason is the tight connection between the function
of a gene product and its expression pattern. As a rule, each gene
is expressed in the specific cells and under the specific conditions
in which its product makes a contribution to fitness. Just as nat-
ural selection has precisely tuned the biochemical properties of
the gene product, so it has tuned the regulatory properties that
govern when and where the product is made and in what quan-
tity. The logic of natural selection, as well as experimental evi-
dence, provides part of the basis for our belief that there is a
sensible link between the expression pattern and the function of
its gene product. Thirty years of molecular biology have provided
numerous examples of genes that function under specific condi-
tions and whose expression is tightly restricted to those condi-
tions. The generality and exquisite precision of this link is
revealed by a global examination of the expression patterns of all
the genes of yeast, as described below. Third, promoters function
as transducers, responding to inputs of information about the
identity, environment and internal state of a cell by changing the
level of transcription of specific genes. Thus, as we learn what
information is transduced by the promoter of each gene, we can
begin to read this information from the profile of transcripts,
easily obtained using a DNA microarray. Fourth, the set of genes
expressed in a cell determine what the cell is made of, what bio-
chemical and regulatory systems are operative, how the cell is
built and what it can and cannot do. As we learn to infer the bio-
logical consequences of specific features of gene expression pat-
terns using our growing knowledge of the functions of individual
sets of genes, we can use microarrays as ‘microscopes’ to see a
comprehensive, dynamic molecular picture of the living cell.

A new kind of map
In the past two years, we and others have studied the expression
patterns of all the yeast genes, in a wide variety of circumstances,
using microarray hybridization8,9,18–22. As every gene in the yeast
genome can be represented on the microarrays, the picture of
gene expression that emerges is comprehensive.

Fig. 1 Gene expression analysis using a DNA microarray. In this illustration,
mRNA samples from vegetative and sporulating yeast cells are compared. The
total pool of messenger RNA from each cell population is used to prepare fluo-
rescently labelled cDNA by reverse transcription in the presence of fluores-
cently labelled nucleotide precursors. To allow direct comparison of the
abundance of each gene in the two samples, the two samples are labelled with
different fluorsin this example, a red fluor for the mRNA from sporulating
yeast and a green fluor for the mRNA from the vegetative yeast cells. The two
fluorescently labelled cDNAs are then mixed and hybridized with a DNA
microarray in which each yeast gene is represented as a distinct spot of DNA.
Irrespective of their fluorescent labels, the cDNA sequences representing each
individual transcript hybridize specifically with the corresponding gene
sequence in the array. Thus, the relative abundance in sporulating as compared
with vegetative yeast cells of the transcripts from each gene is reflected by the
ratio of ‘red’ to ‘green’ fluorescence measured at the array element represent-
ing that gene. For example, the greater relative abundance of the TEP1 mRNA
in the sporulating cells results in a high ratio of red-labelled to green-labelled
copies of the corresponding cDNA, and an equivalent ratio of red to green sig-
nal hybridized at the array element composed of DNA from TEP1.

mRNA

TEP1
cDNA

DNA microarray

© 1999 Nature America Inc. • http://genetics.nature.com
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Le résultat
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Le transcriptome

Le transcriptome reflète

• la source du tissue, l’organe, le type de cellules

• l’activité et l’état du tissue:

? état de développement, croissance, mort

? cycle cellulaire

? malade / sain

? réponse à des thérapie
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Les espoirs

• découverte de cibles thérapeutiques

• diagnostic et pronostic médical

• pharmacogénomique

• biologie des systèmes etc...
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Analyse typique du transcriptome

• Analyse d’image, normalisation

• Détection de gènes différentiellement exprimés

• Analyse exploratoire, clustering

• Analyse discriminante

• Reconstruction de réseaux génétiques
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Analyse d’image, normalisation

Experiments

G
en

es
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Exemple d’analyse exploratoire

(Alizadeth et al., 2000)
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Exemple d’analyse discriminante

that class discovery could be tested by class
prediction: If putative classes reflect true
structure, then a class predictor based on
these classes should perform well.

To test this hypothesis, we evaluated the
clusters A1 and A2. We constructed predic-
tors to assign new samples as “type A1” or
“type A2.” Predictors that used a wide range
of different numbers of informative genes
performed well in cross-validation. For ex-
ample, a 20-gene predictor gave 34 accurate
predictions with high prediction strength, one
error, and three uncertains (34). The one
“error” was the assignment of the sole AML
sample in class A1 to class A2, and two of the
three uncertains were ALL samples in class
A2. The cross-validation thus not only
showed high accuracy, but actually refined
the SOM-defined classes: With one excep-
tion, the subset of samples accurately classi-
fied in cross-validation were those perfectly
subdivided by the SOM into ALL and AML

classes. The results suggest an iterative pro-
cedure for refining clusters, in which an SOM
is used to initially cluster the data, a predictor
is constructed, and samples not correctly pre-
dicted in cross-validation are removed. The
edited data set could then be used to generate
an improved predictor to be tested on an
independent data set (35).

We then tested the class predictor of the
A1-A2 distinction on the independent data set.
In the general case of class discovery, predic-
tors for novel classes cannot be assessed for
“accuracy” on new samples, because the “right”
way to classify the independent samples is not
known. Instead, however, one can assess
whether the new samples are assigned a high
prediction strength. High prediction strengths
indicate that the structure seen in the initial data
set is also seen in the independent data set. The
prediction strengths, in fact, were quite high:
The median PS was 0.61, and 74% of samples
were above threshold (Fig. 4B). To assess these

results, we performed the same analyses with
random clusters. Such clusters consistently
yielded predictors with poor accuracy in cross-
validation and low prediction strength on the
independent data set (Fig. 4B). On the basis of
such analysis (36), the A1-A2 distinction can
be seen to be meaningful, rather than simply a
statistical artifact of the initial data set. The
results thus show that the AML-ALL distinc-
tion could have been automatically discovered
and confirmed without previous biological
knowledge.

We then sought to extend the class dis-
covery by searching for finer subclasses of
the leukemias. We used a SOM to divide the
samples into four clusters (denoted B1 to
B4). We subsequently obtained immunophe-
notype data on the samples and found that the
four classes largely corresponded to AML,
T-lineage ALL, B-lineage ALL, and B-lin-
eage ALL, respectively (Fig. 4C). The four-
cluster SOM thus divided the samples along

Fig. 3. (A) Prediction strengths. The scatter-
plots show the prediction strengths (PSs) for
the samples in cross-validation (left) and on the
independent sample (right). Median PS is de-
noted by a horizontal line. Predictions with PS
! 0.3 are considered as uncertain. (B) Genes
distinguishing ALL from AML. The 50 genes
most highly correlated with the ALL-AML class
distinction are shown. Each row corresponds to
a gene, with the columns corresponding to
expression levels in different samples. Expres-
sion levels for each gene are normalized across
the samples such that the mean is 0 and the SD
is 1. Expression levels greater than the mean
are shaded in red, and those below the mean
are shaded in blue. The scale indicates SDs
above or below the mean. The top panel shows
genes highly expressed in ALL, the bottom panel shows genes more
highly expressed in AML. Although these genes as a group appear
correlated with class, no single gene is uniformly expressed across the class,

illustrating the value of a multigene prediction method. For a complete list
of gene names, accession numbers, and raw expression values, see www.
genome.wi.mit.edu/MPR.

B

R E P O R T S

15 OCTOBER 1999 VOL 286 SCIENCE www.sciencemag.org534

(Golub et al., 1999)
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Exemple de reconstruction de réseau
USING BAYESIAN NETWORKS 611

FIG. 2. An example of the graphical display of Markov features. This graph shows a “local map” for the gene
SVS1. The width (and color) of edges corresponds to the computed con!dence level. An edge is directed if there is a
suf!ciently high con!dence in the order between the genes connected by the edge. This local map shows that CLN2
separates SVS1 from several other genes. Although there is a strong connection between CLN2 to all these genes,
there are no other edges connecting them. This indicates that, with high con!dence, these genes are conditionally
independent given the expression level of CLN2.

4.1. Robustness analysis

We performed a number of tests to analyze the statistical signi!cance and robustness of our procedure.
Some of these tests were carried out on a smaller data set with 250 genes for computational reasons.

To test the credibility of our con!dence assessment, we created a random data set by randomly permuting
the order of the experiments independently for each gene. Thus for each gene the order was random, but
the composition of the series remained unchanged. In such a data set, genes are independent of each other,
and thus we do not expect to !nd “real” features. As expected, both order and Markov relations in the
random data set have signi!cantly lower con!dence. We compare the distribution of con!dence estimates
between the original data set and the randomized set in Figure 3. Clearly, the distribution of con!dence
estimates in the original data set have a longer and heavier tail in the high con!dence region. In the
linear-Gaussian model we see that random data does not generate any feature with con!dence above 0.3.
The multinomial model is more expressive and thus susceptible to over-!tting. For this model, we see a
smaller gap between the two distributions. Nonetheless, randomized data does not generate any feature
with con!dence above 0.8, which leads us to believe that most features that are learned in the original data
set with such con!dence are not artifacts of the bootstrap estimation.

(Friedman et al., 2000)
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Partie 2

Une approche pour l’analyse de
voies métaboliques
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Motivation : de nombreuses voies
métaboliques sont connues

From http://www.genome.ad.jp/kegg/pathway
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Les puces à ADN mesurent la dynamique
de l’expression

(From Spellman et al., 1998)
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Question : comment les comparer?

VS

Détecter l’activité des voies? Trouver de nouvelles voies?
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Astuce mathématique (NIPS’02)

• n gènes

• Expressions : f = (f1, . . . , fn)> ∈ Rn

• Un graphe G de gènes définit une nouvelle géométrie

Euclidienne sur les profiles d’expression par la formule:

||f ||2G = f>LGf,

où LG est le Laplacien du graphe.
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Laplacien du graphe

1

2

3

4

5

LG =


1 0 −1 0 0
0 1 −1 0 0
−1 −1 3 −1 0
0 0 −1 2 −1
0 0 0 −1 1
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Propriétés du Laplacien

• L est une matrice symétrique, à valeur propres positives,

donc ||f ||G est bien une norme Euclidienne.

• Elle vérifie:

||f ||2G = f>LGf =
∑
i∼j

(f(i)− f(j))2

donc f a une petite norme si f varie lentement le long

des arètes du graphes.
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Pourquoi ||f ||G?

• Les voies métaboliques sont des composantes connexes

du graphe

• Contrôler ||f ||G assure que f varie peu au sein de voies

métaboliques potentielles

• Plusieurs problèmes se formulent naturellement à partir

de cette norme
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Exemple 1 : Régression régularisée

• Supposons qu’à chaque donnée d’expression xi ∈ Rn

soit associée une covariable yi ∈ R (âge, développement

d’une tumeur, niveau de pollution, ...)

• La régression par moindre carrés classique cherche un

vecteur ŵ ∈ Rn qui minimise:

min
w∈Rn

p∑
i=1

(
w>xi − yi

)2
.
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Exemple 1 : Régression régularisée (cont.)

• Si on sait que w doit mettre en valeur certaines voies

métaboliques, il est plus efficace de minimiser:

min
w∈Rn

p∑
i=1

(
w>xi − yi

)2
+λ||w||2G.

• Avantages : meilleures propriétés statistiques, meilleure

interprétabilité
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Exemple 2 : Extraction d’activité de voies

g1

g5
g6

g7
g3
g4

g8

g2

Trouver w ∈ Rp tel que ||f ||G soit petit, avec fi = w>xi.
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Application (ECCB’03)

Comparaison du graphe des voies métaboliques et de

données d’expression du cycle cellulaire de la levure

Time

E
xp

re
ss

io
n
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Exemple de gènes positivement corrélés
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Autres applications

• Extraction de features pour la classification supervisée

de gènes (NIPS’02)

• Extraction de features pour la classification non

supervisée et la détection d’opérons dans les génomes

bactériens (ISMB’03)

• Reconstruction de réseaux génétiques (ISMB’04,
NIPS’04, ISMB’05).
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Partie 3

Le projet Kernelchip (2004-07):
cancer et régulation
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Caractéristiques d’une tumeur



33

Modèle 1: Cancer de la vessie (carcinomes)
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Modèle 1: Cancer de la vessie (cont.)
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Modèle 2: Tumeur d’Ewing
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Exemple de réseau de régulation
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Données

• Transcriptome :

? Cancer de la vessie: 84 patients, puces Affymetrix

HGU95AV2, 8,797 gènes par puce (F. Radvanyi)

? Tumeur d’Ewing: 70 patients et séries temporelles,

puces Affy U133, 22,000 gènes (O. Delattre)

• Réseau de régulation : SHARP (97 gènes), KEGG (484

gènes)
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Le projet

• Graphe dirigé, inhibition, relations indirectes

→ fonctionnelle ||f ||2G modifiée

• Validation de l’approche

→ comparaison des différentes métriques

→ prédiction de phénotype / type de tumeur

→ détection de voies critiques

→ validation biologique
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Conclusion
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Conclusion

• Richesse et quantité des données du transcriptome

• Nécessité d’intégrer et de croiser ces données avec

d’autres sources d’information

• Les données de graphes (interaction, régulation...)

nécessitent des développements mathématiques

particuliers


