## Support Vector Machines and Kernel Methods in bioinformatics



## Jean-Philippe Vert

Ecole des Mines de Paris
Computational Biology group Jean-Philippe.Vert@mines.org

Bioinformatics Center, Kyoto University, Kyoto, Japan, November 18th, 2005.

## Outline

1. Linear Support Vector Machines (SVM)
2. Non-linear SVMs and kernels
3. Kernels
4. Example: string kernels
5. Example: kernels for TIS
6. Kernel methods

## Part 1

Linear Support Vector Machines (SVM)

## Pattern recognition



## Examples of classification problems

QSAR and chemoinformatics: $x$ is a molecule, $y$ is a property (active / inactive, toxic / non-toxic...)

Medical diagnosis: $x$ is a set of features (age, sex, blood type, genome...), $y$ indicates the risk.

Gene function prediction: $x$ is a string, $y$ is a function

## What is a SVM?

a family of learning algorithm for pattern recognition (works also for more than 2 classes)

Input: a training set

$$
\mathcal{S}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}
$$

of objects $x_{i} \in \mathcal{X}$ and their known classes $y_{i} \in\{-1,+1\}$.
Output: a classifier $f: \mathcal{X} \rightarrow\{-1,+1\}$ which predicts the class $f(x)$ for any (new) object $x \in \mathcal{X}$.

## Related approaches

Bayesian classifier (based on maximum a posteriori probability)
Fisher linear discriminant
Neural networks
Expert systems (rule-based)
Decision tree

## SVM particularities

Good performance in real-world applications
Robust in high dimension (e.g., images, microarray data, texts)
Handles structured data (sequences, graphs)
Easy integration of heterogeneous data

## Framework

We suppose (for now) that the object are finite-dimensional real vectors: $\mathcal{X}=\mathbb{R}^{n}$ and an object is:

$$
\vec{x}=\left(x_{1}, \ldots, x_{m}\right) .
$$

$x_{i}$ can for example be a feature of a more general object
Example: a protein sequence can be converted to a 20-dimensional vector by taking the amino-acid composition

## Vectors and inner product


inner product:

$$
\begin{align*}
\vec{x} \cdot \overrightarrow{x^{\prime}} & =x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime} \quad\left(+\ldots+x_{m} x_{m}^{\prime}\right)  \tag{1}\\
& =\|\vec{x}\| \cdot\left\|\overrightarrow{x^{\prime}}\right\| \cdot \cos \left(\vec{x}, \overrightarrow{x^{\prime}}\right) \tag{2}
\end{align*}
$$

## Linear classifier



Classification is base on the sign the decision function:

$$
f_{\vec{w}, b}(\vec{x})=\vec{w} \cdot \vec{x}+b
$$

## Linearly separable training set



## Which one is the best?



## Vapnik's answer : LARGEST MARGIN



## How to find the optimal hyperplane?

For a given linear classifier $f_{\vec{w}, b}$ consider the tube defined by the values -1 and +1 of the decision function:


## The width of the tube is $1 /\|\vec{w}\|$

Indeed, the points $\vec{x}_{1}$ and $\overrightarrow{x_{2}}$ satisfy:

$$
\left\{\begin{array}{l}
\vec{w} \cdot \vec{x}_{1}+b=0, \\
\vec{w} \cdot \vec{x}_{2}+b=1 .
\end{array}\right.
$$

By subtracting we get $\vec{w} \cdot\left(\vec{x}_{2}-\vec{x}_{1}\right)=1$, and therefore:

$$
\gamma=\left\|\vec{x}_{2}-\vec{x}_{1}\right\|=\frac{1}{\|\vec{w}\|} .
$$

## All training points should be on the right side of the tube

For positive examples $\left(y_{i}=1\right)$ this means:

$$
\vec{w} \cdot \vec{x}_{i}+b \geq 1
$$

For negative examples $\left(y_{i}=-1\right)$ this means:

$$
\vec{w} \cdot \vec{x}_{i}+b \leq-1
$$

Both cases are summarized as follows:

$$
\forall i=1, \ldots, N, \quad y_{i}\left(\vec{w} \cdot \vec{x}_{i}+b\right) \geq 1
$$

## Finding the optimal hyperplane

The optimal hyperplane is defined by the pair $(\vec{w}, b)$ which solves the following problem:

Minimize:

$$
\|\vec{w}\|^{2}
$$

under the constraints:

$$
\forall i=1, \ldots, N, \quad y_{i}\left(\vec{w} \cdot \vec{x}_{i}+b\right)-1 \geq 0 .
$$

This is a classical quadratic program.

## How to find the minimum of a convex function?

If $h\left(u_{1}, \ldots, u_{n}\right)$ is a convex and differentiable function of $n$ variable, then $\vec{u}^{*}$ is a minimum if and only if:

$$
\nabla h\left(u^{*}\right)=\left(\begin{array}{c}
\frac{\partial h}{\partial u_{1}}\left(\vec{u}^{*}\right) \\
\vdots \\
\frac{\partial h}{\partial u_{1}}\left(\vec{u}^{*}\right)
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right)
$$



## How to find the minimum of a convex function with linear constraints?

Suppose that we want the minimum of $h(u)$ under the constraints:

$$
g_{i}(\vec{u}) \geq 0, \quad i=1, \ldots, N,
$$

where each function $g_{i}(\vec{u})$ is affine.
We introduce one variable $\alpha_{i}$ for each constraint and consider the Lagrangian:

$$
L(\vec{u}, \vec{\alpha})=h(\vec{u})-\sum_{i=1}^{N} \alpha_{i} g_{i}(\vec{u}) .
$$

## Lagrangian method (ctd.)

For each $\vec{\alpha}$ we can look for $\vec{u}_{\alpha}$ which minimizes $L(\vec{u}, \vec{\alpha})$ (with no constraint), and note the dual function:

$$
L(\vec{\alpha})=\min _{\vec{u}} L(\vec{u}, \vec{\alpha})
$$

The dual variable $\vec{\alpha}^{*}$ which maximizes $L(\vec{\alpha})$ gives the solution of the primal minimization problem with constraint:

$$
\vec{u}^{*}=\vec{u}_{\alpha^{*}} .
$$

## Application to optimal hyperplane

In order to minimize:

$$
\frac{1}{2}\|\vec{w}\|^{2}
$$

under the constraints:

$$
\forall i=1, \ldots, N, \quad y_{i}\left(\vec{w} \cdot \vec{x}_{i}+b\right)-1 \geq 0
$$

we introduce one dual variable $\alpha_{i}$ for each constraint, i.e., for each training point. The Lagrangian is:

$$
L(\vec{w}, b, \vec{\alpha})=\frac{1}{2}\|\vec{w}\|^{2}-\sum_{i=1}^{N} \alpha_{i}\left(y_{i}\left(\vec{w} \cdot \vec{x}_{i}+b\right)-1\right) .
$$

## Solving the dual problem

The dual problem is to find $\alpha^{*}$ maximize

$$
L(\vec{\alpha})=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \vec{x}_{i} \cdot \vec{x}_{j},
$$

under the (simple) constraints $\alpha_{i} \geq 0$ (for $i=1, \ldots, N$ ), and

$$
\sum_{i=1}^{N} \alpha_{i} y_{i}=0
$$

$\vec{\alpha}^{*}$ can be easily found using classical optimization softwares.

## Recovering the optimal hyperplane

Once $\vec{\alpha}^{*}$ is found, we recover $\left(\vec{w}^{*}, b^{*}\right)$ corresponding to the optimal hyperplane. $w^{*}$ is given by:

$$
\vec{w}^{*}=\sum_{i=1}^{N} \alpha_{i} \vec{x}_{i},
$$

and the decision function is therefore:

$$
\begin{align*}
f^{*}(\vec{x}) & =\vec{w}^{*} \cdot \vec{x}+b^{*} \\
& =\sum_{i=1}^{N} \alpha_{i} \vec{x}_{i} \cdot \vec{x}+b^{*} . \tag{3}
\end{align*}
$$

## Interpretation : support vectors



In general, training sets are not linearly separable


## What goes wrong?

The dual problem, maximize

$$
L(\vec{\alpha})=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \vec{x}_{i} \cdot \vec{x}_{j},
$$

under the constraints $\alpha_{i} \geq 0$ (for $i=1, \ldots, N$ ), and

$$
\sum_{i=1}^{N} \alpha_{i} y_{i}=0
$$

has no solution: the larger some $\alpha_{i}$, the larger the function to maximize.

## Enforcing a solution

One solution is to limit the range of $\vec{\alpha}$, to be sure that one solution exists. For example, maximize

$$
L(\vec{\alpha})=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \vec{x}_{i} \cdot \vec{x}_{j},
$$

under the constraints:

$$
\left\{\begin{array}{l}
0 \leq \alpha_{i} \leq C, \quad \text { for } i=1, \ldots, N \\
\sum_{i=1}^{N} \alpha_{i} y_{i}=0
\end{array}\right.
$$

## Interpretation



## Remarks

This formulation finds a trade-off between:
$\star$ minimizing the training error
$\star$ maximizing the margin

Other formulations are possible to adapt SVM to general training sets.

All properties of the separable case are conserved (support vectors, sparseness, computation efficiency...)

## Linear SVM: conclusion

Finds the optimal hyperplane, which corresponds to the largest margin

Can be solved easily using a dual formulation
The solution is sparse: the number of support vectors can be very small compared to the size of the training set

Only support vectors are important for prediction of future points. All other points can be forgotten.

## Part 2

Non-linear SVMs and kernels

## Sometimes linear classifiers are not interesting



## Solution: non-linear mapping to a feature space



## Example



Let $\Phi(\vec{x})=\left(x_{1}^{2}, x_{2}^{2}\right)^{\prime}, \vec{w}=(1,1)^{\prime}$ and $b=1$. Then the decision function is:

$$
f(\vec{x})=x_{1}^{2}+x_{2}^{2}-R^{2}=\vec{w} \cdot \Phi(\vec{x})+b,
$$

## Kernel (simple but important)

For a given mapping $\Phi$ from the space of objects $\mathcal{X}$ to some feature space, the kernel of two objects $x$ and $x^{\prime}$ is the inner product of their images in the features space:

$$
\forall x, x^{\prime} \in \mathcal{X}, \quad K\left(x, x^{\prime}\right)=\vec{\Phi}(x) \cdot \vec{\Phi}\left(x^{\prime}\right)
$$

Example: if $\vec{\Phi}(\vec{x})=\left(x_{1}^{2}, x_{2}^{2}\right)^{\prime}$, then

$$
K\left(\vec{x}, \vec{x}^{\prime}\right)=\vec{\Phi}(\vec{x}) \cdot \vec{\Phi}\left(\vec{x}^{\prime}\right)=\left(x_{1}\right)^{2}\left(x_{1}^{\prime}\right)^{2}+\left(x_{2}\right)^{2}\left(x_{2}^{\prime}\right)^{2} .
$$

## Training a SVM in the feature space

Replace each $\vec{x} \cdot \vec{x}^{\prime}$ in the SVM algorithm by $K\left(x, x^{\prime}\right)$
The dual problem is to maximize

$$
L(\vec{\alpha})=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(x_{i}, x_{j}\right),
$$

under the constraints:

$$
\left\{\begin{array}{l}
0 \leq \alpha_{i} \leq C, \quad \text { for } i=1, \ldots, N \\
\sum_{i=1}^{N} \alpha_{i} y_{i}=0
\end{array}\right.
$$

## Predicting with a SVM in the feature space

The decision function becomes:

$$
\begin{align*}
f(x) & =\vec{w}^{*} \cdot \vec{\Phi}(x)+b^{*} \\
& =\sum_{i=1}^{N} \alpha_{i} K\left(x_{i}, x\right)+b^{*} . \tag{4}
\end{align*}
$$

## The kernel trick

The explicit computation of $\vec{\Phi}(x)$ is not necessary. The kernel $K\left(x, x^{\prime}\right)$ is enough. SVM work implicitly in the feature space.

It is sometimes possible to easily compute kernels which correspond to complex large-dimensional feature spaces.

## Kernel example

For any vector $\vec{x}=\left(x_{1}, x_{2}\right)^{\prime}$, consider the mapping:

$$
\Phi(\vec{x})=\left(x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}, \sqrt{2} x_{1}, \sqrt{2} x_{2}, 1\right)^{\prime}
$$

The associated kernel is:

$$
\begin{aligned}
K\left(\vec{x}, \vec{x}^{\prime}\right) & =\Phi(\vec{x}) \cdot \Phi\left(\vec{x}^{\prime}\right) \\
& =\left(x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}+1\right)^{2} \\
& =\left(\vec{x} \cdot \vec{x}^{\prime}+1\right)^{2}
\end{aligned}
$$

## Classical kernels for vectors

Polynomial:

$$
K\left(x, x^{\prime}\right)=\left(x \cdot x^{\prime}+1\right)^{d}
$$

Gaussian radial basis function

$$
K\left(x, x^{\prime}\right)=\exp \left(-\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)
$$

Sigmoid

$$
K\left(x, x^{\prime}\right)=\tanh \left(\kappa x \cdot x^{\prime}+\theta\right)
$$

## Example: classification with a Gaussian kernel

$$
f(\vec{x})=\sum_{i=1}^{N} \alpha_{i} \exp \left(\frac{\left\|\vec{x}-\vec{x}_{i}\right\|^{2}}{2 \sigma^{2}}\right)
$$



## SVM in practice

Many free implementations, see http://www.kernel-machines.org

For example, using GIST (microarray.genomecenter.columbia.edu/gist/ > compute-weights -train data.txt -class data.class > data.weights > classify -train data.txt -learned data.weights -test test.txt > test. predict

- Parameter tuning is important and not so obvious


## Examples: SVM in bioinformatics

- Gene functional classification from microarry: Brown et al. (2000), Pavlidis et al. (2001)

Tissue classification from microarray: Mukherje et al. (1999), Furey et al. (2000), Guyon et al. (2001)

Protein family prediction from sequence: Jaakkoola et al. (1998)
Protein secondary structure prediction: Hua et al. (2001)

- Protein subcellular localization prediction from sequence: Hua et al. (2001)


## Part 3

## Kernels

## Remember the kernel



## Properties of the kernel

A kernel is a similarity measure
It defines the geometry of the feature space (lengths and angles)
(Aronszajn, 1950) A function $K\left(x, x^{\prime}\right)$ is a kernel if and only if the following matrix is symmetric positive definite (all eigenvalues are positive) for all choices of $\left(x_{1}, \ldots, x_{n}\right)$ :

$$
K=\left(\begin{array}{ccc}
K\left(x_{1}, x_{1}\right) & K\left(x_{1}, x_{2}\right) & \ldots \\
K\left(x_{2}, x_{1}\right) & K\left(x_{2}, x_{2}\right) & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

## Important remark

KERNELS DO NOT NEED TO BE DEFINED FOR VECTORS ONLY.

KERNELS CAN BE DEFINED FOR STRINGS, GRAPHS, FINITE AUTOMATA, IMAGES, ...

SVM CAN THEREFORE BE APPLIED AT NO COST ON THESE OBJECTS.

## 3 ways to make kernels

Define a set of features of interest, compute the feature vector of every gene, and compute the dot products (see examples in yesterday's talk).

Define a large set of features and find tricks to compute the dot product implicitly (without computing the feature vectors)

Start with a similarity measure you find pertinent (e.g., SW score) and check that it is a kernel.

## Kernel engineering

Particular kernels can be imagined to include prior knowledge about:
the types of data (vectors, sequences, graphs...)
the problem at hand
into the geometry of the feature space.
This process is called kernel engineering

## Examples of kernel engineering

Kernels for sequences based on common subsequences
Kernel to recognize translation initiation site

Convolution kernels

Kernels built from Bayesian tree models

Diffusion kernels on graphs

## Data integration (IMPORTANT)

Suppose various data (gene sequence, expression, phylogenetic profile...) can be represented by kernels $K_{1}, \ldots, K_{p}$.

Many operations can create new kernels from kernels: sum, pointwise limit,...

Example: $K=\sum_{i=1}^{p} a_{i} K_{i}$ with $a_{i} \geq 0$ is a new kernel
The weights $a_{i}$ can be optimized (semi-definite programming...)

## The kernel phylosophy

Let $\mathcal{F}$ the set of symetric positive definite matrices (or functions)
Each dataset is represented by a point in $\mathcal{F}$

The data are then forgotten : everything takes place in $\mathcal{F}$
$\mathcal{F}$ is a closed convex cone, closed under pointwise limits and Schur products...

## Part 4

Example: string kernels based on common subsequences

## Motivation

Goal: define a kernel for variable-length sequences (useful to handle bio-polymers)

Intuition: two sequences are related when they share common substrings or subsequences.

## References

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini and C. Watkins. Text classification using string kernels. Journal of Machine Learning Research, 2:419-444, 2002.
C. Leslie, E. Eskin and W.S. Noble. The spectrum kernel: a string kernel for svm protein classification. Russ B. Altman, A. Keith Dunker, Lawrence Hunter, Kevin Lauerdale, Teri E. Klein, , Proceedings of the Pacific Symposium on Biocomputing 2002, 564-575. World Scientific, 2002.

## Substrings

A string $s=s_{1}, \ldots, s_{p}$ is a substring of a string $x=x_{1}, \ldots, x_{n}$ (with $n \geq p$ ) if the letters of $s$ appear in the same order in $x$ (gaps allowed).

The length $l(s, x)$ of a substring $s$ in a string $x$ is the distance between the first and the last letter in $x$

Example: $s=$ ofot is a substring of $x=$ bioinformatics, with length $l(s, x)=9$.

## String matching kernel (Lohdi et al., 2002)

The string matching kernel is defined by:

$$
K\left(x, x^{\prime}\right)=\sum_{s \text { common substring }} \lambda^{l(s, x)+l\left(s, x^{\prime}\right)},
$$

where $\lambda$ is a parameter.
Two strings are similar when they share many common substrings
The feature space is the space of all possible substrings

## Computation of the string matching kernel

The dimension of the feature space is very large (number of possible substrings), but...

There exists a dynamic programming method to compute the kernel $K\left(x, x^{\prime}\right)$ between any two sequences in $O\left(|x|\left|x^{\prime}\right| n\right)$, where $n$ is the length of the substrings considered.

Promising results on text classification

## Spectrum kernel (Leslie et al., 2002)

Same idea, but gaps not allowed (common sub-blocks)
Efficient implementation using a suffix tree

Classification of a sequence $x$ in $O(|x|)$ using a sliding window
Encouraging results on remote homology detection (superfamily prediction): performs like PSI-Blast, a bit lower than SAM and SVM+Fisher kernel

## More string kernels

Mismatch kernel

Fisher kernel

Convolution and local alignment kernels
Motif kernel

## Part 5

Kernel to recognize translation initiation site

## The problem

Translation initiation sites (TIS) are the position in DNA where regions coding for proteins start

All coding sequences start with the start codon ATG
Given a ATG in a DNA sequence, is it a TIS?

## References

A. Zien, G. Ratsch, S. Mika, B. Schölkopf, T. Lengauer and K.-R. Muller. Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics, 16(9):799-807, 2000.

## Formulation

Pick up a window of 200 nucleotides centered around the candidate ATG

Encode each nucleotide with a 5 bits word: 00001,. . . ,10000 for $\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}$ and unknown.

Use this 1000 long bit vectors to train a SVM to predict whether the central ATG corresponds to a TIS

- Which kernel to use?


## Polynomial kernels

$$
K\left(\vec{x}, \vec{x}^{\prime}\right)=\left(\vec{x} \cdot \vec{x}^{\prime}\right)^{d}
$$

The corresponding feature space is made of $C_{n-1}^{d}$ monomials features of degree $d$
$d=1$ : counts the number of common bits
$d=2$ : counts the number of common pairs of bits (pairwise correlations)

- etc...


## Locally improved kernels

- Intuition: while certain local correlations are typical for TIS, dependencies between distant positions are of minor importance or do not even exist. They only add noise to the feature space.

At each sequence position, sequences can be compared locally using a small window of length $2 l+1$ with inner correlations of up to $d_{1}$ positions:

$$
\operatorname{win}_{p}\left(x, x^{\prime}\right)=\left(\sum_{j=-l}^{+l} w_{j} \operatorname{match}_{p+j}\left(x, x^{\prime}\right)\right)^{d_{1}} .
$$

## Locally improved kernels (ctd.)

Add the contributions of all windows, and of correlations between up to $d_{2}$ windows:

$$
K\left(x, x^{\prime}\right)=\left(\sum_{p=1}^{n} \operatorname{win}_{p}(x, y)\right)^{d_{2}}
$$

## Results

$d_{2}>1$ (long-range correlations) does not improve performance

| Method | Overall error (\%) |
| :---: | :---: |
| Neural network | 15.4 |
| Salzberg method | 13.8 |
| SVM, linear kernel | 13.2 |
| SVM, locally improved kernel $\left(d_{1}=4, l=4\right)$ | 11.9 |

## Part 6

## Kernel methods

## Kernel methods

Suppose you are given a kernel $K(.,$.$) . Then you can perform$ various operations in the feature space without computing the image $\vec{\Phi}(g)$ of each gene $g$ :

Compute the distance between any two genes, or between any gene and the center of mass of the gene database

Principal component analysis (PCA)
Canonical correlation analysis (CCA)

- Classify the genes into classes (Support vector machines)


## Distance between two genes



$$
\begin{aligned}
d\left(g_{1}, g_{2}\right)^{2} & =\left\|\vec{\Phi}\left(g_{1}\right)-\vec{\Phi}\left(g_{2}\right)\right\|^{2} \\
& =\left(\vec{\Phi}\left(g_{1}\right)-\vec{\Phi}\left(g_{2}\right)\right) \cdot\left(\vec{\Phi}\left(g_{1}\right)-\vec{\Phi}\left(g_{2}\right)\right) \\
& =\vec{\Phi}\left(g_{1}\right) \cdot \vec{\Phi}\left(g_{1}\right)+\vec{\Phi}\left(g_{2}\right) \cdot \vec{\Phi}\left(g_{2}\right)-2 \vec{\Phi}\left(g_{1}\right) \cdot \vec{\Phi}\left(g_{2}\right) \\
d\left(g_{1}, g_{2}\right)^{2} & =K\left(g_{1}, g_{1}\right)+K\left(g_{2}, g_{2}\right)-2 K\left(g_{1}, g_{2}\right)
\end{aligned}
$$

## Distance between a gene and the center of mass



Center of mass: $\vec{m}=\frac{1}{N} \sum_{i=1}^{N} \vec{\Phi}\left(g_{i}\right)$, hence:

$$
\begin{aligned}
\left\|\vec{\Phi}\left(g_{1}\right)-\vec{m}\right\|^{2} & =\vec{\Phi}\left(g_{1}\right) \cdot \vec{\Phi}\left(g_{1}\right)-2 \vec{\Phi}\left(g_{1}\right) \cdot \vec{m}+\vec{m} \cdot \vec{m} \\
& =K\left(g_{1}, g_{1}\right)-\frac{2}{N} \sum_{i=1}^{N} K\left(g_{1}, g_{i}\right)+\frac{1}{N^{2}} \sum_{i, j=1}^{N} K\left(g_{i}, g_{j}\right)
\end{aligned}
$$

## Example: greedy multiple alignment (Gorodkin et al., GIW 2001)

Use the SW score as a kernel for sequences (?)
Compute the distance between each sequence and the center of mass

First align the sequences near the center of mass
Then add sequences one by one to the multiple alignment, by increasing distance from the center of mass

## Principal component analysis (PCA)



Find the eigenvectors of the matrix:

$$
\begin{aligned}
K & =\left(\vec{\Phi}\left(g_{i}\right) \cdot \vec{\Phi}\left(g_{j}\right)\right)_{i, j=1 \ldots N} \\
& =\left(K\left(g_{i}, g_{j}\right)\right)_{i, j=1 \ldots N}
\end{aligned}
$$

Useful to represent the objects as small vectors (feature extraction).

## Canonical correlation analysis (CCA)


$K_{1}$ and $K_{2}$ are two different kernels for the same objects (genes). CCA is performed by solving the generalized eigenvalue problem:

$$
\left(\begin{array}{cc}
0 & K_{1} K_{2} \\
K_{2} K_{1} & 0
\end{array}\right) \vec{\xi}=\rho\left(\begin{array}{cc}
K_{1}^{2} & 0 \\
0 & K_{2}^{2}
\end{array}\right) \vec{\xi}
$$

Useful to find correlations between different representations of the

## same objects

## More kernel methods

Any algorithm can be kernelized if it can be expressed in terms of inner product

The library of kernel methods include SVM, kernel-PCA, kernelCCA, kernel-Fisher discriminant, kernel-ICA, kernel-clustering, kernel logistic regression, kernel network inference...

- Modularity : any kernel can be used with any kernel method

Conclusion

## Conclusion

SVM and kernel methods are now widely used in computational biology

Good performance, possibility to handle and integrate structured data

Active research field

## References

Schölkopf, B., Tsuda, K., and Vert, J.-P. (2004). Kernel Methods in Computational Biology. MIT Press.

350+ references listed at:
http://cg.ensmp.fr/~vert/svn/bibli/html/biosvm.html

