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Part 1

Linear Support Vector Machines
(SVM)
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Pattern recognition
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Examples of classification problems

• QSAR and chemoinformatics: x is a molecule, y is a property

(active / inactive, toxic / non-toxic...)

• Medical diagnosis: x is a set of features (age, sex, blood type,

genome...), y indicates the risk.

• Gene function prediction: x is a string, y is a function
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What is a SVM?

• a family of learning algorithm for pattern recognition (works also

for more than 2 classes)

• Input: a training set

S = {(x1, y1), . . . , (xN , yN)}

of objects xi ∈ X and their known classes yi ∈ {−1,+1}.

• Output: a classifier f : X → {−1,+1} which predicts the class

f(x) for any (new) object x ∈ X .
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Related approaches

• Bayesian classifier (based on maximum a posteriori probability)

• Fisher linear discriminant

• Neural networks

• Expert systems (rule-based)

• Decision tree

• ...
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SVM particularities

• Good performance in real-world applications

• Robust in high dimension (e.g., images, microarray data, texts)

• Handles structured data (sequences, graphs)

• Easy integration of heterogeneous data
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Framework

• We suppose (for now) that the object are finite-dimensional real

vectors: X = Rn and an object is:

~x = (x1, . . . , xm).

• xi can for example be a feature of a more general object

• Example: a protein sequence can be converted to a 20-dimensional

vector by taking the amino-acid composition
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Vectors and inner product

x2

x

x1

inner product:

~x.~x′ = x1x
′
1 + x2x

′
2 (+ . . . + xmx′m) (1)

= ||~x||.||~x′||. cos(~x, ~x′) (2)
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Linear classifier

w.x+b < 0
Half−space:

Class: −1

w.x+b=0
Hyperplan:

w.x+b > 0
Half−space:

Class: +1
w

Classification is base on the sign the decision function:

f~w,b(~x) = ~w.~x + b
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Linearly separable training set

w.x+b=0w.x+b < 0

w.x+b > 0
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Which one is the best?
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Vapnik’s answer : LARGEST MARGIN

γ

γ
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How to find the optimal hyperplane?

For a given linear classifier f~w,b consider the tube defined by the

values −1 and +1 of the decision function:

x2
x1

w.x+b > +1

w.x+b < −1
w

w.x+b=+1

w.x+b=−1

w.x+b=0
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The width of the tube is 1/||~w||

Indeed, the points ~x1 and ~x2 satisfy:{
~w.~x1 + b = 0,

~w.~x2 + b = 1.

By subtracting we get ~w.(~x2 − ~x1) = 1, and therefore:

γ = ||~x2 − ~x1|| =
1

||~w||
.
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All training points should be on the right side of the
tube

For positive examples (yi = 1) this means:

~w.~xi + b ≥ 1

For negative examples (yi = −1) this means:

~w.~xi + b ≤ −1

Both cases are summarized as follows:

∀i = 1, . . . , N, yi (~w.~xi + b) ≥ 1
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Finding the optimal hyperplane

The optimal hyperplane is defined by the pair (~w, b) which solves the

following problem:

Minimize:

||~w||2

under the constraints:

∀i = 1, . . . , N, yi (~w.~xi + b)− 1 ≥ 0.

This is a classical quadratic program.
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How to find the minimum of a convex function?

If h(u1, . . . , un) is a convex and differentiable function of n variable,

then ~u∗ is a minimum if and only if:

∇h(u∗) =

 ∂h
∂u1

(~u∗)
...

∂h
∂u1

(~u∗)

 =

 0
...

0



u*

h(u)
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How to find the minimum of a convex function with
linear constraints?

Suppose that we want the minimum of h(u) under the constraints:

gi(~u) ≥ 0, i = 1, . . . , N,

where each function gi(~u) is affine.

We introduce one variable αi for each constraint and consider the

Lagrangian:

L(~u, ~α) = h(~u)−
N∑

i=1

αigi(~u).
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Lagrangian method (ctd.)

For each ~α we can look for ~uα which minimizes L(~u, ~α) (with no

constraint), and note the dual function:

L(~α) = min
~u

L(~u, ~α).

The dual variable ~α∗ which maximizes L(~α) gives the solution of the

primal minimization problem with constraint:

~u∗ = ~uα∗.
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Application to optimal hyperplane

In order to minimize:
1
2
||~w||2

under the constraints:

∀i = 1, . . . , N, yi (~w.~xi + b)− 1 ≥ 0.

we introduce one dual variable αi for each constraint, i.e., for each

training point. The Lagrangian is:

L(~w, b, ~α) =
1
2
||~w||2 −

N∑
i=1

αi (yi (~w.~xi + b)− 1) .
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Solving the dual problem

The dual problem is to find α∗ maximize

L(~α) =
N∑

i=1

αi −
1
2

N∑
i,j=1

αiαjyiyj~xi.~xj,

under the (simple) constraints αi ≥ 0 (for i = 1, . . . , N), and

N∑
i=1

αiyi = 0.

~α∗ can be easily found using classical optimization softwares.
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Recovering the optimal hyperplane

Once ~α∗ is found, we recover (~w∗, b∗) corresponding to the optimal

hyperplane. w∗ is given by:

~w∗ =
N∑

i=1

αi~xi,

and the decision function is therefore:

f∗(~x) = ~w∗.~x + b∗

=
N∑

i=1

αi~xi.~x + b∗.
(3)
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Interpretation : support vectors

α=0

α>0
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In general, training sets are not linearly separable
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What goes wrong?

The dual problem, maximize

L(~α) =
N∑

i=1

αi −
1
2

N∑
i,j=1

αiαjyiyj~xi.~xj,

under the constraints αi ≥ 0 (for i = 1, . . . , N), and

N∑
i=1

αiyi = 0,

has no solution: the larger some αi, the larger the function to

maximize.
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Enforcing a solution

One solution is to limit the range of ~α, to be sure that one solution

exists. For example, maximize

L(~α) =
N∑

i=1

αi −
1
2

N∑
i,j=1

αiαjyiyj~xi.~xj,

under the constraints:{
0 ≤ αi≤ C, for i = 1, . . . , N∑N

i=1 αiyi = 0.
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Interpretation

α=0

0<α< C

α=C
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Remarks

• This formulation finds a trade-off between:

? minimizing the training error

? maximizing the margin

• Other formulations are possible to adapt SVM to general training

sets.

• All properties of the separable case are conserved (support vectors,

sparseness, computation efficiency...)
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Linear SVM: conclusion

• Finds the optimal hyperplane, which corresponds to the largest

margin

• Can be solved easily using a dual formulation

• The solution is sparse: the number of support vectors can be very

small compared to the size of the training set

• Only support vectors are important for prediction of future points.

All other points can be forgotten.
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Part 2

Non-linear SVMs and kernels
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Sometimes linear classifiers are not interesting
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Solution: non-linear mapping to a feature space

φ
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Example

2R

x1

x2

x1

x2

2

Let Φ(~x) = (x2
1, x

2
2)
′, ~w = (1, 1)′ and b = 1. Then the decision

function is:

f(~x) = x2
1 + x2

2 −R2 = ~w.Φ(~x) + b,
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Kernel (simple but important)

For a given mapping Φ from the space of objects X to some feature

space, the kernel of two objects x and x′ is the inner product of their

images in the features space:

∀x, x′ ∈ X , K(x, x′) = ~Φ(x).~Φ(x′).

Example: if ~Φ(~x) = (x2
1, x

2
2)
′, then

K(~x, ~x′) = ~Φ(~x).~Φ(~x′) = (x1)2(x′1)
2 + (x2)2(x′2)

2.
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Training a SVM in the feature space

Replace each ~x.~x′ in the SVM algorithm by K(x, x′)

The dual problem is to maximize

L(~α) =
N∑

i=1

αi −
1
2

N∑
i,j=1

αiαjyiyjK(xi, xj),

under the constraints:{
0 ≤ αi ≤ C, for i = 1, . . . , N∑N

i=1 αiyi = 0.
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Predicting with a SVM in the feature space

The decision function becomes:

f(x) = ~w∗.~Φ(x) + b∗

=
N∑

i=1

αiK(xi, x) + b∗.
(4)
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The kernel trick

• The explicit computation of ~Φ(x) is not necessary. The kernel

K(x, x′) is enough. SVM work implicitly in the feature space.

• It is sometimes possible to easily compute kernels which correspond

to complex large-dimensional feature spaces.
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Kernel example

For any vector ~x = (x1, x2)′, consider the mapping:

Φ(~x) =
(
x2

1, x
2
2,
√

2x1x2,
√

2x1,
√

2x2, 1
)′

.

The associated kernel is:

K(~x, ~x′) = Φ(~x).Φ(~x′)

= (x1x
′
1 + x2x

′
2 + 1)2

= (~x.~x′ + 1)2
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Classical kernels for vectors

• Polynomial:

K(x, x′) = (x.x′ + 1)d

• Gaussian radial basis function

K(x, x′) = exp
(
−||x− x′||2

2σ2

)

• Sigmoid

K(x, x′) = tanh(κx.x′ + θ)
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Example: classification with a Gaussian kernel

f(~x) =
N∑

i=1

αi exp
(
||~x− ~xi||2

2σ2

)
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SVM in practice

• Many free implementations, see http://www.kernel-machines.org

• For example, using GIST (microarray.genomecenter.columbia.edu/gist/):

> compute-weights -train data.txt -class data.class > data.weights

> classify -train data.txt -learned data.weights -test test.txt >

test.predict

• Parameter tuning is important and not so obvious
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Examples: SVM in bioinformatics

• Gene functional classification from microarry: Brown et al. (2000),

Pavlidis et al. (2001)

• Tissue classification from microarray: Mukherje et al. (1999),

Furey et al. (2000), Guyon et al. (2001)

• Protein family prediction from sequence: Jaakkoola et al. (1998)

• Protein secondary structure prediction: Hua et al. (2001)

• Protein subcellular localization prediction from sequence: Hua et

al. (2001)
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Part 3

Kernels
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Remember the kernel

φ

K(x, x′) = ~Φ(x).~Φ(x′)
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Properties of the kernel

• A kernel is a similarity measure

• It defines the geometry of the feature space (lengths and angles)

• (Aronszajn, 1950) A function K(x, x′) is a kernel if and only if the

following matrix is symmetric positive definite (all eigenvalues are

positive) for all choices of (x1, . . . , xn):

K =

 K(x1, x1) K(x1, x2) . . .

K(x2, x1) K(x2, x2) . . .
... ... . . .


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Important remark

• KERNELS DO NOT NEED TO BE DEFINED FOR VECTORS

ONLY.

• KERNELS CAN BE DEFINED FOR STRINGS, GRAPHS, FINITE

AUTOMATA, IMAGES, ...

• SVM CAN THEREFORE BE APPLIED AT NO COST ON THESE

OBJECTS.
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3 ways to make kernels

• Define a set of features of interest, compute the feature vector

of every gene, and compute the dot products (see examples in

yesterday’s talk).

• Define a large set of features and find tricks to compute the dot

product implicitly (without computing the feature vectors)

• Start with a similarity measure you find pertinent (e.g., SW score)

and check that it is a kernel.
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Kernel engineering

Particular kernels can be imagined to include prior knowledge about:

• the types of data (vectors, sequences, graphs...)

• the problem at hand

into the geometry of the feature space.

This process is called kernel engineering
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Examples of kernel engineering

• Kernels for sequences based on common subsequences

• Kernel to recognize translation initiation site

• Convolution kernels

• Kernels built from Bayesian tree models

• Diffusion kernels on graphs
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Data integration (IMPORTANT)

• Suppose various data (gene sequence, expression, phylogenetic

profile...) can be represented by kernels K1, . . . ,Kp.

• Many operations can create new kernels from kernels: sum,

pointwise limit,...

• Example: K =
∑p

i=1 aiKi with ai ≥ 0 is a new kernel

• The weights ai can be optimized (semi-definite programming...)



55

The kernel phylosophy

• Let F the set of symetric positive definite matrices (or functions)

• Each dataset is represented by a point in F

• The data are then forgotten : everything takes place in F

• F is a closed convex cone, closed under pointwise limits and Schur

products...
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Part 4

Example: string kernels based on
common subsequences



57

Motivation

• Goal: define a kernel for variable-length sequences (useful to handle

bio-polymers)

• Intuition: two sequences are related when they share common

substrings or subsequences.
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Substrings

• A string s = s1, . . . , sp is a substring of a string x = x1, . . . , xn

(with n ≥ p) if the letters of s appear in the same order in x (gaps

allowed).

• The length l(s, x) of a substring s in a string x is the distance

between the first and the last letter in x

• Example: s = ofot is a substring of x = bioinformatics, with

length l(s, x) = 9.



60

String matching kernel (Lohdi et al., 2002)

• The string matching kernel is defined by:

K(x, x′) =
∑

s common substring

λl(s,x)+l(s,x′),

where λ is a parameter.

• Two strings are similar when they share many common substrings

• The feature space is the space of all possible substrings
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Computation of the string matching kernel

• The dimension of the feature space is very large (number of possible

substrings), but...

• There exists a dynamic programming method to compute the kernel

K(x, x′) between any two sequences in O(|x||x′|n), where n is the

length of the substrings considered.

• Promising results on text classification
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Spectrum kernel (Leslie et al., 2002)

• Same idea, but gaps not allowed (common sub-blocks)

• Efficient implementation using a suffix tree

• Classification of a sequence x in O(|x|) using a sliding window

• Encouraging results on remote homology detection (superfamily

prediction): performs like PSI-Blast, a bit lower than SAM and

SVM+Fisher kernel
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More string kernels

• Mismatch kernel

• Fisher kernel

• Convolution and local alignment kernels

• Motif kernel
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Part 5

Kernel to recognize translation
initiation site
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The problem

• Translation initiation sites (TIS) are the position in DNA where

regions coding for proteins start

• All coding sequences start with the start codon ATG

• Given a ATG in a DNA sequence, is it a TIS?
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Formulation

• Pick up a window of 200 nucleotides centered around the candidate

ATG

• Encode each nucleotide with a 5 bits word: 00001,. . . ,10000 for

A,C,G,T and unknown.

• Use this 1000 long bit vectors to train a SVM to predict whether

the central ATG corresponds to a TIS

• Which kernel to use?
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Polynomial kernels

K(~x, ~x′) = (~x.~x′)d

The corresponding feature space is made of Cd
n−1 monomials

features of degree d

• d = 1: counts the number of common bits

• d = 2: counts the number of common pairs of bits (pairwise

correlations)

• etc...



69

Locally improved kernels

• Intuition: while certain local correlations are typical for TIS,

dependencies between distant positions are of minor importance

or do not even exist. They only add noise to the feature space.

• At each sequence position, sequences can be compared locally using

a small window of length 2l + 1 with inner correlations of up to d1

positions:

winp(x, x′) =

 +l∑
j=−l

wjmatchp+j(x, x′)

d1

.
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Locally improved kernels (ctd.)

• Add the contributions of all windows, and of correlations between

up to d2 windows:

K(x, x′) =

 n∑
p=1

winp(x, y)

d2
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Results

d2 > 1 (long-range correlations) does not improve performance

Method Overall error (%)

Neural network 15.4

Salzberg method 13.8

SVM, linear kernel 13.2

SVM, locally improved kernel (d1 = 4 , l = 4) 11.9
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Part 6

Kernel methods
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Kernel methods

Suppose you are given a kernel K(., .). Then you can perform

various operations in the feature space without computing the image
~Φ(g) of each gene g:

• Compute the distance between any two genes, or between any gene

and the center of mass of the gene database

• Principal component analysis (PCA)

• Canonical correlation analysis (CCA)

• Classify the genes into classes (Support vector machines)
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Distance between two genes

g2φ(    )
0

φ(    )g1 d

d(g1, g2)2 = ‖~Φ(g1)− ~Φ(g2)‖2

=
(
~Φ(g1)− ~Φ(g2)

)
.
(
~Φ(g1)− ~Φ(g2)

)
= ~Φ(g1).~Φ(g1) + ~Φ(g2).~Φ(g2)− 2~Φ(g1).~Φ(g2)

d(g1, g2)2= K(g1, g1) + K(g2, g2)− 2K(g1, g2)
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Distance between a gene and the center of mass

m

φ(    )g1

Center of mass: ~m = 1
N

∑N
i=1

~Φ(gi), hence:

‖~Φ(g1)− ~m‖2 = ~Φ(g1).~Φ(g1)− 2~Φ(g1).~m + ~m.~m

= K(g1, g1)−
2
N

N∑
i=1

K(g1, gi) +
1

N2

N∑
i,j=1

K(gi, gj)
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Example: greedy multiple alignment
(Gorodkin et al., GIW 2001)

• Use the SW score as a kernel for sequences (?)

• Compute the distance between each sequence and the center of

mass

• First align the sequences near the center of mass

• Then add sequences one by one to the multiple alignment, by

increasing distance from the center of mass
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Principal component analysis (PCA)

PC1PC2

Find the eigenvectors of the matrix:

K =
(
~Φ(gi).~Φ(gj)

)
i,j=1...N

=
(
K(gi, gj)

)
i,j=1...N

Useful to represent the objects as small vectors (feature extraction).
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Canonical correlation analysis (CCA)

CCA2

CCA1

CCA1

CCA2

K1 and K2 are two different kernels for the same objects (genes).

CCA is performed by solving the generalized eigenvalue problem:(
0 K1K2

K2K1 0

)
~ξ = ρ

(
K2

1 0
0 K2

2

)
~ξ

Useful to find correlations between different representations of the
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same objects
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More kernel methods

• Any algorithm can be kernelized if it can be expressed in terms of

inner product

• The library of kernel methods include SVM, kernel-PCA, kernel-

CCA, kernel-Fisher discriminant, kernel-ICA, kernel-clustering,

kernel logistic regression, kernel network inference...

• Modularity : any kernel can be used with any kernel method
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Conclusion



82

Conclusion

• SVM and kernel methods are now widely used in computational

biology

• Good performance, possibility to handle and integrate structured

data

• Active research field
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