
1

Support Vector Machines and Kernel Methods in
bioinformatics

Jean-Philippe Vert
Ecole des Mines de Paris

Computational Biology group

Jean-Philippe.Vert@mines.org

Bioinformatics Center, Kyoto University, Kyoto, Japan, November 18th, 2005.

2

Outline

1. Linear Support Vector Machines (SVM)

2. Non-linear SVMs and kernels

3. Kernels

4. Example: string kernels

5. Example: kernels for TIS

6. Kernel methods

3

Part 1

Linear Support Vector Machines
(SVM)

4

Pattern recognition

5

Examples of classification problems

• QSAR and chemoinformatics: x is a molecule, y is a property

(active / inactive, toxic / non-toxic...)

• Medical diagnosis: x is a set of features (age, sex, blood type,

genome...), y indicates the risk.

• Gene function prediction: x is a string, y is a function

6

What is a SVM?

• a family of learning algorithm for pattern recognition (works also

for more than 2 classes)

• Input: a training set

S = {(x1, y1), . . . , (xN , yN)}

of objects xi ∈ X and their known classes yi ∈ {−1,+1}.

• Output: a classifier f : X → {−1,+1} which predicts the class

f(x) for any (new) object x ∈ X .

7

Related approaches

• Bayesian classifier (based on maximum a posteriori probability)

• Fisher linear discriminant

• Neural networks

• Expert systems (rule-based)

• Decision tree

• ...

8

SVM particularities

• Good performance in real-world applications

• Robust in high dimension (e.g., images, microarray data, texts)

• Handles structured data (sequences, graphs)

• Easy integration of heterogeneous data

9

Framework

• We suppose (for now) that the object are finite-dimensional real

vectors: X = Rn and an object is:

~x = (x1, . . . , xm).

• xi can for example be a feature of a more general object

• Example: a protein sequence can be converted to a 20-dimensional

vector by taking the amino-acid composition

10

Vectors and inner product

x2

x

x1

inner product:

~x.~x′ = x1x
′
1 + x2x

′
2 (+ . . . + xmx′m) (1)

= ||~x||.||~x′||. cos(~x, ~x′) (2)

11

Linear classifier

w.x+b < 0
Half−space:

Class: −1

w.x+b=0
Hyperplan:

w.x+b > 0
Half−space:

Class: +1
w

Classification is base on the sign the decision function:

f~w,b(~x) = ~w.~x + b

12

Linearly separable training set

w.x+b=0w.x+b < 0

w.x+b > 0

13

Which one is the best?

14

Vapnik’s answer : LARGEST MARGIN

γ

γ

15

How to find the optimal hyperplane?

For a given linear classifier f~w,b consider the tube defined by the

values −1 and +1 of the decision function:

x2
x1

w.x+b > +1

w.x+b < −1
w

w.x+b=+1

w.x+b=−1

w.x+b=0

16

The width of the tube is 1/||~w||

Indeed, the points ~x1 and ~x2 satisfy:{
~w.~x1 + b = 0,

~w.~x2 + b = 1.

By subtracting we get ~w.(~x2 − ~x1) = 1, and therefore:

γ = ||~x2 − ~x1|| =
1

||~w||
.

17

All training points should be on the right side of the
tube

For positive examples (yi = 1) this means:

~w.~xi + b ≥ 1

For negative examples (yi = −1) this means:

~w.~xi + b ≤ −1

Both cases are summarized as follows:

∀i = 1, . . . , N, yi (~w.~xi + b) ≥ 1

18

19

Finding the optimal hyperplane

The optimal hyperplane is defined by the pair (~w, b) which solves the

following problem:

Minimize:

||~w||2

under the constraints:

∀i = 1, . . . , N, yi (~w.~xi + b)− 1 ≥ 0.

This is a classical quadratic program.

20

How to find the minimum of a convex function?

If h(u1, . . . , un) is a convex and differentiable function of n variable,

then ~u∗ is a minimum if and only if:

∇h(u∗) =

 ∂h
∂u1

(~u∗)
...

∂h
∂u1

(~u∗)

 =

 0
...

0



u*

h(u)

21

How to find the minimum of a convex function with
linear constraints?

Suppose that we want the minimum of h(u) under the constraints:

gi(~u) ≥ 0, i = 1, . . . , N,

where each function gi(~u) is affine.

We introduce one variable αi for each constraint and consider the

Lagrangian:

L(~u, ~α) = h(~u)−
N∑

i=1

αigi(~u).

22

Lagrangian method (ctd.)

For each ~α we can look for ~uα which minimizes L(~u, ~α) (with no

constraint), and note the dual function:

L(~α) = min
~u

L(~u, ~α).

The dual variable ~α∗ which maximizes L(~α) gives the solution of the

primal minimization problem with constraint:

~u∗ = ~uα∗.

23

Application to optimal hyperplane

In order to minimize:
1
2
||~w||2

under the constraints:

∀i = 1, . . . , N, yi (~w.~xi + b)− 1 ≥ 0.

we introduce one dual variable αi for each constraint, i.e., for each

training point. The Lagrangian is:

L(~w, b, ~α) =
1
2
||~w||2 −

N∑
i=1

αi (yi (~w.~xi + b)− 1) .

24

Solving the dual problem

The dual problem is to find α∗ maximize

L(~α) =
N∑

i=1

αi −
1
2

N∑
i,j=1

αiαjyiyj~xi.~xj,

under the (simple) constraints αi ≥ 0 (for i = 1, . . . , N), and

N∑
i=1

αiyi = 0.

~α∗ can be easily found using classical optimization softwares.

25

Recovering the optimal hyperplane

Once ~α∗ is found, we recover (~w∗, b∗) corresponding to the optimal

hyperplane. w∗ is given by:

~w∗ =
N∑

i=1

αi~xi,

and the decision function is therefore:

f∗(~x) = ~w∗.~x + b∗

=
N∑

i=1

αi~xi.~x + b∗.
(3)

26

27

Interpretation : support vectors

α=0

α>0

28

In general, training sets are not linearly separable

29

What goes wrong?

The dual problem, maximize

L(~α) =
N∑

i=1

αi −
1
2

N∑
i,j=1

αiαjyiyj~xi.~xj,

under the constraints αi ≥ 0 (for i = 1, . . . , N), and

N∑
i=1

αiyi = 0,

has no solution: the larger some αi, the larger the function to

maximize.

30

Enforcing a solution

One solution is to limit the range of ~α, to be sure that one solution

exists. For example, maximize

L(~α) =
N∑

i=1

αi −
1
2

N∑
i,j=1

αiαjyiyj~xi.~xj,

under the constraints:{
0 ≤ αi≤ C, for i = 1, . . . , N∑N

i=1 αiyi = 0.

31

Interpretation

α=0

0<α< C

α=C

32

Remarks

• This formulation finds a trade-off between:

? minimizing the training error

? maximizing the margin

• Other formulations are possible to adapt SVM to general training

sets.

• All properties of the separable case are conserved (support vectors,

sparseness, computation efficiency...)

33

Linear SVM: conclusion

• Finds the optimal hyperplane, which corresponds to the largest

margin

• Can be solved easily using a dual formulation

• The solution is sparse: the number of support vectors can be very

small compared to the size of the training set

• Only support vectors are important for prediction of future points.

All other points can be forgotten.

34

Part 2

Non-linear SVMs and kernels

35

Sometimes linear classifiers are not interesting

36

Solution: non-linear mapping to a feature space

φ

37

Example

2R

x1

x2

x1

x2

2

Let Φ(~x) = (x2
1, x

2
2)
′, ~w = (1, 1)′ and b = 1. Then the decision

function is:

f(~x) = x2
1 + x2

2 −R2 = ~w.Φ(~x) + b,

38

Kernel (simple but important)

For a given mapping Φ from the space of objects X to some feature

space, the kernel of two objects x and x′ is the inner product of their

images in the features space:

∀x, x′ ∈ X , K(x, x′) = ~Φ(x).~Φ(x′).

Example: if ~Φ(~x) = (x2
1, x

2
2)
′, then

K(~x, ~x′) = ~Φ(~x).~Φ(~x′) = (x1)2(x′1)
2 + (x2)2(x′2)

2.

39

Training a SVM in the feature space

Replace each ~x.~x′ in the SVM algorithm by K(x, x′)

The dual problem is to maximize

L(~α) =
N∑

i=1

αi −
1
2

N∑
i,j=1

αiαjyiyjK(xi, xj),

under the constraints:{
0 ≤ αi ≤ C, for i = 1, . . . , N∑N

i=1 αiyi = 0.

40

Predicting with a SVM in the feature space

The decision function becomes:

f(x) = ~w∗.~Φ(x) + b∗

=
N∑

i=1

αiK(xi, x) + b∗.
(4)

41

The kernel trick

• The explicit computation of ~Φ(x) is not necessary. The kernel

K(x, x′) is enough. SVM work implicitly in the feature space.

• It is sometimes possible to easily compute kernels which correspond

to complex large-dimensional feature spaces.

42

Kernel example

For any vector ~x = (x1, x2)′, consider the mapping:

Φ(~x) =
(
x2

1, x
2
2,
√

2x1x2,
√

2x1,
√

2x2, 1
)′

.

The associated kernel is:

K(~x, ~x′) = Φ(~x).Φ(~x′)

= (x1x
′
1 + x2x

′
2 + 1)2

= (~x.~x′ + 1)2

43

Classical kernels for vectors

• Polynomial:

K(x, x′) = (x.x′ + 1)d

• Gaussian radial basis function

K(x, x′) = exp
(
−||x− x′||2

2σ2

)

• Sigmoid

K(x, x′) = tanh(κx.x′ + θ)

44

Example: classification with a Gaussian kernel

f(~x) =
N∑

i=1

αi exp
(
||~x− ~xi||2

2σ2

)

45

SVM in practice

• Many free implementations, see http://www.kernel-machines.org

• For example, using GIST (microarray.genomecenter.columbia.edu/gist/):

> compute-weights -train data.txt -class data.class > data.weights

> classify -train data.txt -learned data.weights -test test.txt >

test.predict

• Parameter tuning is important and not so obvious

46

Examples: SVM in bioinformatics

• Gene functional classification from microarry: Brown et al. (2000),

Pavlidis et al. (2001)

• Tissue classification from microarray: Mukherje et al. (1999),

Furey et al. (2000), Guyon et al. (2001)

• Protein family prediction from sequence: Jaakkoola et al. (1998)

• Protein secondary structure prediction: Hua et al. (2001)

• Protein subcellular localization prediction from sequence: Hua et

al. (2001)

47

Part 3

Kernels

48

Remember the kernel

φ

K(x, x′) = ~Φ(x).~Φ(x′)

49

Properties of the kernel

• A kernel is a similarity measure

• It defines the geometry of the feature space (lengths and angles)

• (Aronszajn, 1950) A function K(x, x′) is a kernel if and only if the

following matrix is symmetric positive definite (all eigenvalues are

positive) for all choices of (x1, . . . , xn):

K =

 K(x1, x1) K(x1, x2) . . .

K(x2, x1) K(x2, x2) . . .
...



50

Important remark

• KERNELS DO NOT NEED TO BE DEFINED FOR VECTORS

ONLY.

• KERNELS CAN BE DEFINED FOR STRINGS, GRAPHS, FINITE

AUTOMATA, IMAGES, ...

• SVM CAN THEREFORE BE APPLIED AT NO COST ON THESE

OBJECTS.

51

3 ways to make kernels

• Define a set of features of interest, compute the feature vector

of every gene, and compute the dot products (see examples in

yesterday’s talk).

• Define a large set of features and find tricks to compute the dot

product implicitly (without computing the feature vectors)

• Start with a similarity measure you find pertinent (e.g., SW score)

and check that it is a kernel.

52

Kernel engineering

Particular kernels can be imagined to include prior knowledge about:

• the types of data (vectors, sequences, graphs...)

• the problem at hand

into the geometry of the feature space.

This process is called kernel engineering

53

Examples of kernel engineering

• Kernels for sequences based on common subsequences

• Kernel to recognize translation initiation site

• Convolution kernels

• Kernels built from Bayesian tree models

• Diffusion kernels on graphs

54

Data integration (IMPORTANT)

• Suppose various data (gene sequence, expression, phylogenetic

profile...) can be represented by kernels K1, . . . ,Kp.

• Many operations can create new kernels from kernels: sum,

pointwise limit,...

• Example: K =
∑p

i=1 aiKi with ai ≥ 0 is a new kernel

• The weights ai can be optimized (semi-definite programming...)

55

The kernel phylosophy

• Let F the set of symetric positive definite matrices (or functions)

• Each dataset is represented by a point in F

• The data are then forgotten : everything takes place in F

• F is a closed convex cone, closed under pointwise limits and Schur

products...

56

Part 4

Example: string kernels based on
common subsequences

57

Motivation

• Goal: define a kernel for variable-length sequences (useful to handle

bio-polymers)

• Intuition: two sequences are related when they share common

substrings or subsequences.

58

References

• H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini and C. Watkins. Text
classification using string kernels. Journal of Machine Learning Research,
2:419-444, 2002.

• C. Leslie, E. Eskin and W.S. Noble. The spectrum kernel: a string kernel
for svm protein classification. Russ B. Altman, A. Keith Dunker, Lawrence
Hunter, Kevin Lauerdale, Teri E. Klein, , Proceedings of the Pacific Symposium
on Biocomputing 2002, 564-575. World Scientific, 2002.

59

Substrings

• A string s = s1, . . . , sp is a substring of a string x = x1, . . . , xn

(with n ≥ p) if the letters of s appear in the same order in x (gaps

allowed).

• The length l(s, x) of a substring s in a string x is the distance

between the first and the last letter in x

• Example: s = ofot is a substring of x = bioinformatics, with

length l(s, x) = 9.

60

String matching kernel (Lohdi et al., 2002)

• The string matching kernel is defined by:

K(x, x′) =
∑

s common substring

λl(s,x)+l(s,x′),

where λ is a parameter.

• Two strings are similar when they share many common substrings

• The feature space is the space of all possible substrings

61

Computation of the string matching kernel

• The dimension of the feature space is very large (number of possible

substrings), but...

• There exists a dynamic programming method to compute the kernel

K(x, x′) between any two sequences in O(|x||x′|n), where n is the

length of the substrings considered.

• Promising results on text classification

62

Spectrum kernel (Leslie et al., 2002)

• Same idea, but gaps not allowed (common sub-blocks)

• Efficient implementation using a suffix tree

• Classification of a sequence x in O(|x|) using a sliding window

• Encouraging results on remote homology detection (superfamily

prediction): performs like PSI-Blast, a bit lower than SAM and

SVM+Fisher kernel

63

More string kernels

• Mismatch kernel

• Fisher kernel

• Convolution and local alignment kernels

• Motif kernel

64

Part 5

Kernel to recognize translation
initiation site

65

The problem

• Translation initiation sites (TIS) are the position in DNA where

regions coding for proteins start

• All coding sequences start with the start codon ATG

• Given a ATG in a DNA sequence, is it a TIS?

66

References

• A. Zien, G. Ratsch, S. Mika, B. Schölkopf, T. Lengauer and K.-R. Muller.
Engineering support vector machine kernels that recognize translation
initiation sites. Bioinformatics, 16(9):799-807, 2000.

67

Formulation

• Pick up a window of 200 nucleotides centered around the candidate

ATG

• Encode each nucleotide with a 5 bits word: 00001,. . . ,10000 for

A,C,G,T and unknown.

• Use this 1000 long bit vectors to train a SVM to predict whether

the central ATG corresponds to a TIS

• Which kernel to use?

68

Polynomial kernels

K(~x, ~x′) = (~x.~x′)d

The corresponding feature space is made of Cd
n−1 monomials

features of degree d

• d = 1: counts the number of common bits

• d = 2: counts the number of common pairs of bits (pairwise

correlations)

• etc...

69

Locally improved kernels

• Intuition: while certain local correlations are typical for TIS,

dependencies between distant positions are of minor importance

or do not even exist. They only add noise to the feature space.

• At each sequence position, sequences can be compared locally using

a small window of length 2l + 1 with inner correlations of up to d1

positions:

winp(x, x′) =

 +l∑
j=−l

wjmatchp+j(x, x′)

d1

.

70

Locally improved kernels (ctd.)

• Add the contributions of all windows, and of correlations between

up to d2 windows:

K(x, x′) =

 n∑
p=1

winp(x, y)

d2

71

Results

d2 > 1 (long-range correlations) does not improve performance

Method Overall error (%)

Neural network 15.4

Salzberg method 13.8

SVM, linear kernel 13.2

SVM, locally improved kernel (d1 = 4 , l = 4) 11.9

72

Part 6

Kernel methods

73

Kernel methods

Suppose you are given a kernel K(., .). Then you can perform

various operations in the feature space without computing the image
~Φ(g) of each gene g:

• Compute the distance between any two genes, or between any gene

and the center of mass of the gene database

• Principal component analysis (PCA)

• Canonical correlation analysis (CCA)

• Classify the genes into classes (Support vector machines)

74

Distance between two genes

g2φ()
0

φ()g1 d

d(g1, g2)2 = ‖~Φ(g1)− ~Φ(g2)‖2

=
(
~Φ(g1)− ~Φ(g2)

)
.
(
~Φ(g1)− ~Φ(g2)

)
= ~Φ(g1).~Φ(g1) + ~Φ(g2).~Φ(g2)− 2~Φ(g1).~Φ(g2)

d(g1, g2)2= K(g1, g1) + K(g2, g2)− 2K(g1, g2)

75

Distance between a gene and the center of mass

m

φ()g1

Center of mass: ~m = 1
N

∑N
i=1

~Φ(gi), hence:

‖~Φ(g1)− ~m‖2 = ~Φ(g1).~Φ(g1)− 2~Φ(g1).~m + ~m.~m

= K(g1, g1)−
2
N

N∑
i=1

K(g1, gi) +
1

N2

N∑
i,j=1

K(gi, gj)

76

Example: greedy multiple alignment
(Gorodkin et al., GIW 2001)

• Use the SW score as a kernel for sequences (?)

• Compute the distance between each sequence and the center of

mass

• First align the sequences near the center of mass

• Then add sequences one by one to the multiple alignment, by

increasing distance from the center of mass

77

Principal component analysis (PCA)

PC1PC2

Find the eigenvectors of the matrix:

K =
(
~Φ(gi).~Φ(gj)

)
i,j=1...N

=
(
K(gi, gj)

)
i,j=1...N

Useful to represent the objects as small vectors (feature extraction).

78

Canonical correlation analysis (CCA)

CCA2

CCA1

CCA1

CCA2

K1 and K2 are two different kernels for the same objects (genes).

CCA is performed by solving the generalized eigenvalue problem:(
0 K1K2

K2K1 0

)
~ξ = ρ

(
K2

1 0
0 K2

2

)
~ξ

Useful to find correlations between different representations of the

79

same objects

80

More kernel methods

• Any algorithm can be kernelized if it can be expressed in terms of

inner product

• The library of kernel methods include SVM, kernel-PCA, kernel-

CCA, kernel-Fisher discriminant, kernel-ICA, kernel-clustering,

kernel logistic regression, kernel network inference...

• Modularity : any kernel can be used with any kernel method

81

Conclusion

82

Conclusion

• SVM and kernel methods are now widely used in computational

biology

• Good performance, possibility to handle and integrate structured

data

• Active research field

83

References

• Schölkopf, B., Tsuda, K., and Vert, J.-P. (2004). Kernel Methods

in Computational Biology. MIT Press.

• 350+ references listed at:

http://cg.ensmp.fr/~vert/svn/bibli/html/biosvm.html

