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CBIO overview

The newest research center of Ecole des Mines
Started in 2002, became an autonomous research center
in 2006
Objective: develop mathematical approaches and
computational tools to process and analyze biological and
chemical data
http://cbio.ensmp.fr
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CBIO research

1 Machine learning and statistics (theory and algorithms)
2 Analysis of post-genomic data and systems biology (focus

on cancer and malaria)
3 Data analysis methods for new technologies (DNA chips,

cell chips, high-throughput microscopy)
4 Virtual screening (docking, ligand-based)
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Outline

1 Classification and interpretation of microarray data

2 Including pathway information
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Classical setting

Data available
Gene expression measures for more than 10k genes
Measured on less than 100 samples of two (or more)
different classes (e.g., different tumors)

Goal
Design a classifier to automatically assign a class to future
samples from their expression profile
Interpret biologically the differences between the classes
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Linear classifiers

The approach

Each sample is represented by a vector x = (x1, . . . , xp)
where p > 105 is the number of probes
Classification: given the set of labeled sample, learn a
linear decision function:

f (x) =

p∑
i=1

βixi + β0 ,

that is positive for one class, negative for the other
Interpretation: the weight βi quantifies the influence of
gene i for the classification
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Linear classifiers

Pitfalls
No robust estimation procedure exist for 100 samples in
105 dimensions!
It is necessary to reduce the complexity of the problem
with prior knowledge.
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Example : Norm Constraints

The approach
A common method in statistics to learn with few samples in
high dimension is to constrain the norm of β, e.g.:

Euclidean norm (support vector machines, ridge
regression): ‖β ‖2 =

∑p
i=1 β2

i

L1-norm (lasso regression) : ‖β ‖1 =
∑p

i=1 |βi |

Pros
Good performance in
classification

Cons
Limited interpretation
(small weights)
No prior biological
knowledge
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Example 2: Feature Selection

The approach
Constrain most weights to be 0, i.e., select a few genes (< 20)
whose expression are enough for classification. Interpretation
is then about the selected genes.

Pros
Good performance in
classification
Useful for biomarker
selection
Apparently easy
interpretation

Cons
The gene selection
process is usually not
robust
Wrong interpretation is
the rule (too much
correlation between
genes)
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Pathway interpretation

Motivation
Basic biological functions are usually expressed in terms of
pathways and not of single genes (metabolic, signaling,
regulatory)
Many pathways are already known
How to use this prior knowledge to constrain the weights to
have an interpretation at the level of pathways?
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Pathway interpretation
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Bad example
The graph is the
complete known
metabolic network of the
budding yeast (from
KEGG database)
We project the classifier
weight learned by a
SVM
Good classification
accuracy, but no
possible interpretation!
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Pathway interpretation

Good example
The graph is the
complete known
metabolic network of the
budding yeast (from
KEGG database)
We project the classifier
weight learned by a
spectral SVM
Good classification
accuracy, and good
interpretation!
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Spectral SVM

Short description
1 Pre-process each microarray profile to filter out the high

frequencies with respect to the known pathways. This
involves discrete Fourier transforms + spectral graph
theory.

2 Perform classical SVM on the smoothed expression
profiles
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Discussion

You will always have an interpretable model because you
enforce it. Can we trust is?

Any method must use prior knowledge because of the
n << p problem.
In many cases the “true” classifier is more likely to have a
pathway interpretation than to be based on a few genes
only.

There are many cases where smoothness is not expected on
the pathway (negative regulation...)

We just enforce a global smoothness, local jumps are
possible (although penalized).
As more data are available, a more precise estimation is
possible.
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Conclusion

Manipulating gene expression data is difficult for statistical
reasons.
Inclusion of prior knowledge is required (e.g., feature
selection)
Known pathways form a natural prior knowledge
This results in classifiers with good accuracy and
interpretability.
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