
Virtual Screening with Support Vector Machines

Jean-Philippe Vert
Jean-Philippe.Vert@ensmp.fr

Center for Computational Biology
Ecole des Mines de Paris

Pierre Fabre, Institute of Drug Sciences and Technologies of
Toulouse, May 22, 2006

Jean-Philippe Vert (Mines de Paris) Virtual Screening with SVM 1 / 37



CBIO overview

The newest research center of Ecole des Mines
Started in 2002, became an autonomous research center in 2006
Objective: develop mathematical approaches and computational
tools to process and analyze biological and chemical data
http://cbio.ensmp.fr
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CBIO research

1 Machine learning and statistics
theory
algorithms

2 Analysis of post-genomic data and systems biology
focus on cancer
focus on malaria

3 Data analysis methods for new technologies
DNA chips
cell chips
high-throughput microscopy

4 Virtual screening
ligand-based
docking
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Ligand-Based Virtual Screening

Objective
Build models to predict biochemical properties of small molecules from
their structures.

Structures

C15H14ClN3O3

Properties
binding to a therapeutic target
pharmacokinetics (ADME)
toxicity
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Classical approaches

Two important steps
1 Define a feature map to represent each molecule as a vector of

fixed dimension
2 Apply an algorithm for regression or pattern recognition to learn

from a training set of molecules with labels.

Difficulties
Expressivity of the features
Dimension of the vector
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Example: 2D Structural Keys

Features
A vector indexed by a limited set of informative stuctures

O

N N
OOO

N

O O

N

O

O

Pros
Fine description
Prior knowledge is included
interpretability

Cons
Limited number of features
How to choose the
features?
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Example: 2D Fingerprints

Features
A vector indexed by a large set of molecular fragments

. . . . . .C N
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Pros
Many features
Easy to detect

Cons
Too many features?
Hashing =⇒ clashes

Jean-Philippe Vert (Mines de Paris) Virtual Screening with SVM 9 / 37



Example: 2D Fingerprints

Features
A vector indexed by a large set of molecular fragments

. . . . . .C N
CC
ON

C C NO C

CO C

CC C
CN C

NO CC C C

CC CC C C

CN CC C C

N

O

O

O N

O

C
. . . . . . . . .

Pros
Many features
Easy to detect

Cons
Too many features?
Hashing =⇒ clashes

Jean-Philippe Vert (Mines de Paris) Virtual Screening with SVM 9 / 37



Example: 3D Fingerprints

Features
A collection of all possible combinations of the three/four features
(hydrophobic, hydrogen bond donor and acceptor) in the 3D
space.
Discretized to form a vector

Pros
3D information
Pharmacophore detection

Cons
Discretization
Size limitation
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The Machine Learning Paradigm

Objective
Predict a property y for objects x

x = molecule, gene sequence, picture, ...
y is continuous (regression) or discrete (pattern recognition)

A two-step approach
1 Training: observe a set

S = {(x1, y1) , . . . , (xn, yn)}

of labeled objects, and learn a function f : X → Y
2 Test: Given a new object x , predict its label by f (x).
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Examples

In biomedical research..
Virtual screening : x is the description of a molecule, y is the
activity / toxicity / drugability ...
Medical diagnosis and prognosis: x is a set of features (age,
weight, transcriptome...), y is the risk / type of tumor / expected
evolution of disease.
Functional genomics : x is a set of gene features (sequence,
expresssion...), y is the function of the gene
...
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What is a SVM?

Main features
an algorithm for pattern recognition and regression
robust in high dimension (e.g., images, texts, microarrays,
fingerprints)
handles vectorial or structured data (e.g., sequences, graphs)
allows easy integration of heterogeneous data (e.g., gene
sequence and expression, docking score and molecule
structure...)
state-of-the-art performance on many real-world applications.

Jean-Philippe Vert (Mines de Paris) Virtual Screening with SVM 14 / 37



Related approaches

least-square regression
neural networks
decision trees
...
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Simplest SVM
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Simplest SVM

γ

γ
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Properties

Performance
State-of-the-art in many real-world applications
Resistant to large dimensions

Data representation
Data do not need to be explicitly vectors
A similarity function K (x , x ′) between data is enough
K must be symmetric and positive definite
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Kernel examples

For vectors
The linear kernel

Klin
(
x, x′

)
= x>x′ .

The polynomial kernel

Kpoly
(
x, x′

)
=

(
x>x′ + a

)d
.

The Gaussian RBF kernel:

KGaussian
(
x, x′

)
= exp

(
−‖x− x′ ‖2

2σ2

)
.
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Motivations

. . . . . .C N
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Let Φ(x) the vector of fragment counts:
Long fragments lead to large dimensions :

SVM can learn in high dimension
Φ(x) is too long to be stored, and hashes induce clashes:

SVM do not need Φ(x), they just need the kernel

K (x , x ′) = φ(x)>φ(x ′) .
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2D fingerprint kernel

Definition
For any d > 0 let φd(x) be the vector of counts of all fragments of
length up to d :

φd(x) = ( #(C),#(O),#(N), ... ,#(C-C),#(C=O),#(C-N),

...,#(C-C-C=O-C-N),#(C=C-C=C-C=C), ...)>

The 2D fingerprint kernel is defined by

Kd(x , x ′) = φd(x)>φd(x ′) .
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Extensions

Infinite fragments
d = +∞ is possible, if the contribution of a fragment of length p is
weighted, e.g., by λp with 0 < λ < 1.
Worst-case complexity: O(| x | × | x ′ |) (faster in practice)

Atom relabebling with the Morgan index

Order 2 indices
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No Morgan Indices Order 1 indices

compromise between fingerprints and structural keys features
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Experiments

MUTAG dataset
aromatic/hetero-aromatic compounds
high mutagenic activity /no mutagenic activity
188 compouunds: 125 + / 63 -

Results
10-fold cross-validation accuracy

Method Accuracy
Progol1 81.4%
2D kernel 91.2%

Jean-Philippe Vert (Mines de Paris) Virtual Screening with SVM 24 / 37



Outline

1 Virtual screening

2 Support Vector Machines

3 2D Kernel

4 3D Pharmacophore Kernel

5 Conclusion

Jean-Philippe Vert (Mines de Paris) Virtual Screening with SVM 25 / 37



Space of pharmacophore

3-points pharmacophores

O

O

2

d1
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d

O

O
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d

A set of 3 atoms, and 3 inter-atom distances:

T = {((x1, x2, x3) , (d1, d2, d3)) , xi ∈ {atom types}; di ∈ R}
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3D fingerprint kernel

Pharmacophore fingerprint
1 Discretize the space of pharmacophores T (e.g., 6 atoms or

groups of atoms, 6-7 distance bins) into a finite set Td

2 Count the number of occurrences φt(x) of each pharmacophore
bin t in a given molecule x , to form a pharmacophore fingerprint.

3D kernel
A simple 3D kernel is the inner product of pharmacophore fingerprints:

K (x , x ′) =
∑
t∈Td

φt(x)φt(x ′) .
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Discretization of the pharmacophore space

Common issues
1 If the bins are too large, then they are not specific enough
2 If the bins are too large, then they are too specific

In all cases, the arbitrary position of boundaries between bins affects
the comparison:

x1 x3

x2

→ d(x1, x3) < d(x1, x2)
BUT bin(x1) = bin(x2) 6= bin(x3)
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Kernels between pharmacophores

A small trick

K (x , y) =
∑
t∈Td

φt(x)φt(y)

=
∑
t∈Td

(
X

px∈P(x)

1(bin(px) = t))(
X

py∈P(y)

1(bin(py) = t))

=
∑

px∈P(x)

∑
py∈P(y)

1(bin(px) = bin(py))

General pharmacophore kernel

K (x , y) =
∑

px∈P(x)

∑
py∈P(y)

KP(px , py )
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New pharmacophore kernels

Discretizing the pharmacophore space is equivalent to taking the
following kernel between individual pharmacophores:

KP(p1, p2) = 1 (bin(px) = bin(py))

For general kernels, there is no need for discretization!
For example, is d(p1, p2) is a Euclidean distance between
pharmacophores, take:

KP (p1, p2) = exp (−γd (p1, p2)) .
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Experiments

4 public datasets
BZR: ligands for the benzodiazepine receptor
COX: cyclooxygenase-2 inhibitors
DHFR: dihydrofolate reductase inhibitors
ER: estrogen receptor ligands

TRAIN TEST
Pos Neg Pos Neg

BZR 94 87 63 62
COX 87 91 61 64
DHFR 84 149 42 118
ER 110 156 70 110
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Experiments

Results (accuracy)
Kernel BZR COX DHFR ER
2D (Tanimoto) 71.2 63.0 76.9 77.1
3D fingerprint 75.4 67.0 76.9 78.6
3D not discretized 76.4 69.8 81.9 79.8
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Summary

SVM is a powerful and flexible machine learning algorithm. The
kernel trick allows the manipulation of non-vectorial objects at the
cost of defining a kernel function.
The 2D kernel for molecule extends classical fingerprint-based
approches. It solves the problem of bit clashes, and allows infinite
fingerprints.
The 3D kernel for molecule extends classical pharmacophore
fingerprint-based approaches. It solves the problems of bit
clashes and of discretization.
Both kernels improve upon their classical counterparts, and
provide competitive results on benchmark datasets.
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Ongoing works

Further validation of the kernel approach on larger datasets.
Learning from multiple conformers.
Combination of ligand-based virtual screening with docking
approaches.
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