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CBIO overview

@ The newest research center of Ecole des Mines
@ Started in 2002, became an autonomous research center in 2006

@ Objective: develop mathematical approaches and computational
tools to process and analyze biological and chemical data

@ http://cbio.ensmp.fr
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CBIO research

@ Machine learning and statistics
e theory
e algorithms
@ Analysis of post-genomic data and systems biology

e focus on cancer
e focus on malaria

© Data analysis methods for new technologies

o DNA chips
o cell chips
@ high-throughput microscopy

© Virtual screening

e ligand-based
e docking
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0 Virtual screening

e Support Vector Machines
e 2D Kernel

e 3D Pharmacophore Kernel

e Conclusion
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0 Virtual screening
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Ligand-Based Virtual Screening

Objective

Build models to predict biochemical properties of small molecules from
their structures.
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Ligand-Based Virtual Screening

Objective

Build models to predict biochemical properties of small molecules from
their structures.
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Properties

@ binding to a therapeutic target
@ pharmacokinetics (ADME)
@ toxicity
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Classical approaches

Two important steps

@ Define a feature map to represent each molecule as a vector of
fixed dimension

© Apply an algorithm for regression or pattern recognition to learn
from a training set of molecules with labels.
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Classical approaches

Two important steps

@ Define a feature map to represent each molecule as a vector of
fixed dimension

© Apply an algorithm for regression or pattern recognition to learn
from a training set of molecules with labels.

Difficulties
@ Expressivity of the features
@ Dimension of the vector
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Example: 2D Structural Keys

Features

A vector indexed by a limited set of informative stuctures
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Example: 2D Structural Keys

Features

A vector indexed by a limited set of informative stuctures
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@ Fine description @ Limited number of features
@ Prior knowledge is included @ How to choose the
@ interpretability features? 4
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Example: 2D Fingerprints

Features
A vector indexed by a large set of molecular fragments
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Example: 2D Fingerprints

Features

A vector indexed by a large set of molecular fragments
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@ Many features @ Too many features?
@ Easy to detect @ Hashing = clashes
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Example: 3D Fingerprints

@ A collection of all possible combinations of the three/four features
(hydrophobic, hydrogen bond donor and acceptor) in the 3D
space.

@ Discretized to form a vector
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Example: 3D Fingerprints

@ A collection of all possible combinations of the three/four features
(hydrophobic, hydrogen bond donor and acceptor) in the 3D
space.

@ Discretized to form a vector

@ 3D information @ Discretization
@ Pharmacophore detection @ Size limitation
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e Support Vector Machines
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The Machine Learning Paradigm

Objective
Predict a property y for objects x
@ x = molecule, gene sequence, picture, ...
@ y is continuous (regression) or discrete (pattern recognition)
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The Machine Learning Paradigm

Objective
Predict a property y for objects x
@ x = molecule, gene sequence, picture, ...
@ y is continuous (regression) or discrete (pattern recognition)

A two-step approach

@ Training: observe a set

S = {(X1,y1),...,(Xn,Yn)}

of labeled objects, and learn a function f : X — )
@ Test: Given a new object x, predict its label by f(x).
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Examples

In biomedical research..

@ Virtual screening : x is the description of a molecule, y is the
activity / toxicity / drugability ...

@ Medical diagnosis and prognosis: x is a set of features (age,
weight, transcriptome...), y is the risk / type of tumor / expected
evolution of disease.

@ Functional genomics : x is a set of gene features (sequence,
expresssion...), y is the function of the gene

° ..
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What is a SVM?

@ an algorithm for pattern recognition and regression

@ robust in high dimension (e.g., images, texts, microarrays,
fingerprints)
@ handles vectorial or structured data (e.g., sequences, graphs)

@ allows easy integration of heterogeneous data (e.g., gene
sequence and expression, docking score and molecule
structure...)

@ state-of-the-art performance on many real-world applications.
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Related approaches

@ least-square regression
@ neural networks

@ decision trees

° ..

°
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Simplest SVM
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Simplest SVM
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Performance

@ State-of-the-art in many real-world applications
@ Resistant to large dimensions
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Performance

@ State-of-the-art in many real-world applications
@ Resistant to large dimensions

Data representation

@ Data do not need to be explicitly vectors

@ A similarity function K(x, x") between data is enough
@ K must be symmetric and positive definite
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Kernel examples

For vectors

@ The linear kernel

Kiin (x,X') =x"x".
@ The polynomial kernel
d
Kpoly (X,X') = (xTx’ i a)

@ The Gaussian RBF kernel:

X — X' |2
KGaussian (x7 X/) = exp (_%) :
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Outline

e 2D Kernel
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Let ®(x) the vector of fragment counts:

@ Long fragments lead to large dimensions :
SVM can learn in high dimension

@ ®(x) is too long to be stored, and hashes induce clashes:
SVM do not need ®(x), they just need the kernel

K(x,x') = ¢(x) "o(x) .
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2D fingerprint kernel

For any d > 0 let ¢4(x) be the vector of counts of all fragments of
length up to d:

Pd(X) =( #©, 40,4, ... ,#(C-C),#(C=0),#(C-N),
..., #(C-C-C=0-C-N) , # (C=C-C=C-C=C), .. .)T

The 2D fingerprint kernel is defined by

Ka(x,X') = ¢q(x) " da(X') .
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Extensions

Infinite fragments

@ d =+ is possible, if the contribution of a fragment of length p is
weighted, e.g., by \? with 0 < X\ < 1.

@ Worst-case complexity: O(| x| x | x"|) (faster in practice)

Atom relabebling with the Morgan index

1 2 4
1 1 2 2 4 5
1 o1 2 o1 4 o3
1 3 7
' | i | : H
No Morgan Indices  O1 Order 1 indices O1 Order 2 indices 03

@ compromise between fingerprints and structural keys features
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MUTAG dataset

@ aromatic/hetero-aromatic compounds
@ high mutagenic activity /no mutagenic activity
@ 188 compouunds: 125 + /63 -

Results
10-fold cross-validation accuracy

| A

Method | Accuracy
Progol1 81.4%
2D kernel | 91.2%
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e 3D Pharmacophore Kernel
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Space of pharmacophore

3-points pharmacophores

A set of 3 atoms, and 3 inter-atom distances:

7 ={((x1, X2, X3) , (dy, 02, d3)) , x; € {atom types}; d; € R}
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3D fingerprint kernel

Pharmacophore fingerprint

@ Discretize the space of pharmacophores 7 (e.g., 6 atoms or
groups of atoms, 6-7 distance bins) into a finite set 74

@ Count the number of occurrences ¢;(x) of each pharmacophore
bin t in a given molecule x, to form a pharmacophore fingerprint.

A simple 3D kernel is the inner product of pharmacophore fingerprints:

Ko, x) = 3 ai(x)u(x)

tely
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Discretization of the pharmacophore space

Common issues

@ If the bins are too large, then they are not specific enough
@ If the bins are too large, then they are too specific

In all cases, the arbitrary position of boundaries between bins affects
the comparison:

x1 x3

o
— d(x1,x3) < d(x1,X2)

BUT bin(xy) = bin(xz2) # bin(xs)

X2
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Kernels between pharmacophores

A small trick

Kx.y) = D ¢1(x)de(y)
te7y
= D (3 1bin(p) =H)( S 1(bin(py) =1))
teTy PxEPX) PyEP(Y)
= Z Z 1(bin(px) = bin(py))
PxEP(X) byEP(Y)

v

General pharmacophore kernel

Kx. )= Y Y Ke(pxpy)

PxEP(X) pyEP(Y)

85
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New pharmacophore kernels

@ Discretizing the pharmacophore space is equivalent to taking the
following kernel between individual pharmacophores:

Kp(p1, p2) = 1 (bin(px) = bin(py))

@ For general kernels, there is no need for discretization!

@ For example, is d(p;, p2) is a Euclidean distance between
pharmacophores, take:

Kp (p1,p2) = exp (—d (p1,p2)) -
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Experiments

4 public datasets

@ BZR: ligands for the benzodiazepine receptor
@ COX: cyclooxygenase-2 inhibitors

@ DHFR: dihydrofolate reductase inhibitors

@ ER: estrogen receptor ligands

TRAIN TEST
Pos | Neg | Pos | Neg
BZR 94 | 87 | 63 | 62
COX 87 | 91 61 64
DHFR | 84 | 149 | 42 | 118
ER 110 | 156 | 70 | 110
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Results (accuracy)

Kernel \ BZR \ COX \ DHFR \ ER
2D (Tanimoto) 712 | 63.0| 769 | 771
3D fingerprint 754 | 67.0 | 769 |78.6
3D not discretized | 76.4 | 69.8 | 81.9 | 79.8
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Outline

e Conclusion
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@ SVM is a powerful and flexible machine learning algorithm. The
kernel trick allows the manipulation of non-vectorial objects at the
cost of defining a kernel function.

@ The 2D kernel for molecule extends classical fingerprint-based
approches. It solves the problem of bit clashes, and allows infinite
fingerprints.

@ The 3D kernel for molecule extends classical pharmacophore
fingerprint-based approaches. It solves the problems of bit
clashes and of discretization.

@ Both kernels improve upon their classical counterparts, and
provide competitive results on benchmark datasets.
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Ongoing works

@ Further validation of the kernel approach on larger datasets.
@ Learning from multiple conformers.

@ Combination of ligand-based virtual screening with docking
approaches.
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