Virtual Screening with Support Vector Machines

Jean-Philippe Vert

Jean-Philippe.Vert@ensmp.fr

Center for Computational Biology Ecole des Mines de Paris

Pierre Fabre, Institute of Drug Sciences and Technologies of Toulouse, May 22, 2006

- The newest research center of Ecole des Mines
- Started in 2002, became an autonomous research center in 2006
- Objective: develop mathematical approaches and computational tools to process and analyze biological and chemical data
- http://cbio.ensmp.fr

Machine learning and statistics

- theory
- algorithms
- Analysis of post-genomic data and systems biology
 - focus on cancer
 - focus on malaria
- Oata analysis methods for new technologies
 - DNA chips
 - cell chips
 - high-throughput microscopy
- Virtual screening
 - ligand-based
 - docking

Virtual screening

3 2D Kernel

4 3D Pharmacophore Kernel

Virtual screening

2 Support Vector Machines

3 2D Kernel

- 4) 3D Pharmacophore Kernel
- 5 Conclusion

Ligand-Based Virtual Screening

Objective

Build models to predict biochemical properties of small molecules from their structures.

Structures

Properties

- binding to a therapeutic target
- pharmacokinetics (ADME)
- toxicity

Ligand-Based Virtual Screening

Objective

Build models to predict biochemical properties of small molecules from their structures.

Structures

Properties

- binding to a therapeutic target
- pharmacokinetics (ADME)
- toxicity

Ligand-Based Virtual Screening

Objective

Build models to predict biochemical properties of small molecules from their structures.

Structures

Properties

- binding to a therapeutic target
- pharmacokinetics (ADME)
- toxicity

Two important steps

- Define a feature map to represent each molecule as a vector of fixed dimension
- Apply an algorithm for regression or pattern recognition to learn from a training set of molecules with labels.

Difficulties

- Expressivity of the features
- Dimension of the vector

Two important steps

- Define a feature map to represent each molecule as a vector of fixed dimension
- Apply an algorithm for regression or pattern recognition to learn from a training set of molecules with labels.

Difficulties

- Expressivity of the features
- Dimension of the vector

Example: 2D Structural Keys

Features

A vector indexed by a limited set of informative stuctures

Pros

- Fine description
- Prior knowledge is included
- interpretability

Cons

- Limited number of features
- How to choose the features?

Jean-Philippe Vert (Mines de Paris)

VES

Example: 2D Structural Keys

Features

A vector indexed by a limited set of informative stuctures

Pros

- Fine description
- Prior knowledge is included
- interpretability

Cons

- Limited number of features
- How to choose the features?

LICE

A vector indexed by a large set of molecular fragments

Pros

Many features

Easy to detect

Cons

• Too many features?

• Hashing \implies clashes

A vector indexed by a large set of molecular fragments

Pros

- Many features
- Easy to detect

Cons

- Too many features?
- Hashing \implies clashes

- A collection of all possible combinations of the three/four features (hydrophobic, hydrogen bond donor and acceptor) in the 3D space.
- Discretized to form a vector

 3D information 	 Discretization
Pharmacophore detection	 Size limitation

- A collection of all possible combinations of the three/four features (hydrophobic, hydrogen bond donor and acceptor) in the 3D space.
- Discretized to form a vector

Pros

- 3D information
- Pharmacophore detection

Cons

- Discretization
- Size limitation

Virtual screening

2 Support Vector Machines

3 2D Kernel

4 3D Pharmacophore Kernel

5 Conclusion

Objective

Predict a property y for objects x

- *x* = molecule, gene sequence, picture, ...
- y is continuous (regression) or discrete (pattern recognition)

A two-step approach

Training: observe a set

$$S = \{(x_1, y_1), \dots, (x_n, y_n)\}$$

of labeled objects, and learn a function $f : \mathcal{X} \rightarrow \mathcal{Y}$

Test: Given a new object x, predict its label by f(x)

Objective

Predict a property y for objects x

- *x* = molecule, gene sequence, picture, ...
- y is continuous (regression) or discrete (pattern recognition)

A two-step approach

Training: observe a set

$$S = \{(x_1, y_1), \dots, (x_n, y_n)\}$$

of labeled objects, and learn a function $f : \mathcal{X} \rightarrow \mathcal{Y}$

2 Test: Given a new object x, predict its label by f(x).

In biomedical research..

- Virtual screening : *x* is the description of a molecule, *y* is the activity / toxicity / drugability ...
- Medical diagnosis and prognosis: x is a set of features (age, weight, transcriptome...), y is the risk / type of tumor / expected evolution of disease.
- Functional genomics : *x* is a set of gene features (sequence, expression...), *y* is the function of the gene

o ...

Main features

- an algorithm for pattern recognition and regression
- robust in high dimension (e.g., images, texts, microarrays, fingerprints)
- handles vectorial or structured data (e.g., sequences, graphs)
- allows easy integration of heterogeneous data (e.g., gene sequence and expression, docking score and molecule structure...)
- state-of-the-art performance on many real-world applications.

- least-square regression
- neural networks
- decision trees
- ...

Jean-Philippe Vert (Mines de Paris)

Simplest SVM

Performance

- State-of-the-art in many real-world applications
- Resistant to large dimensions

Data representation

- Data do not need to be explicitly vectors
- A similarity function K(x, x') between data is enough
- K must be symmetric and positive definite

Performance

- State-of-the-art in many real-world applications
- Resistant to large dimensions

Data representation

- Data do not need to be explicitly vectors
- A similarity function K(x, x') between data is enough
- K must be symmetric and positive definite

For vectors

• The linear kernel

$$\mathcal{K}_{\textit{lin}}\left(\mathbf{x},\mathbf{x}'
ight)=\mathbf{x}^{ op}\mathbf{x}'$$
 .

• The polynomial kernel

$$\mathcal{K}_{ extsf{poly}}\left(\mathbf{x},\mathbf{x}'
ight)=\left(\mathbf{x}^{ op}\mathbf{x}'+a
ight)^{d}$$
 .

• The Gaussian RBF kernel:

$$K_{Gaussian}(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\sigma^2}\right)$$

.

Virtual screening

3 2D Kernel

4) 3D Pharmacophore Kernel

Motivations

Let $\Phi(x)$ the vector of fragment counts:

- Long fragments lead to large dimensions : SVM can learn in high dimension
- Φ(x) is too long to be stored, and hashes induce clashes:
 SVM do not need Φ(x), they just need the kernel

$$K(\mathbf{x},\mathbf{x}')=\phi(\mathbf{x})^{\top}\phi(\mathbf{x}') \ .$$

VINES PARIS ARMINE

Definition

For any d > 0 let $\phi_d(x)$ be the vector of counts of all fragments of length up to d:

$$\phi_d(\mathbf{x}) = (\# (C), \# (O), \# (N), \dots, \# (C-C), \# (C-O), \# (C-N), \dots, \# (C-C-C-C-C-C), \# (C-N), \# (C-C-C-C-C-C-C), \dots)^{\top}$$

The 2D fingerprint kernel is defined by

$$K_d(\mathbf{x},\mathbf{x}') = \phi_d(\mathbf{x})^\top \phi_d(\mathbf{x}') \ .$$

Extensions

Infinite fragments

- *d* = +∞ is possible, if the contribution of a fragment of length *p* is weighted, e.g., by λ^p with 0 < λ < 1.
- Worst-case complexity: $O(|x| \times |x'|)$ (faster in practice)

compromise between fingerprints and structural keys features

MUTAG dataset

- aromatic/hetero-aromatic compounds
- high mutagenic activity /no mutagenic activity
- 188 compouunds: 125 + / 63 -

Results

10-fold cross-validation accuracy

Method	Accuracy
Progol1	81.4%
2D kernel	91.2%

Virtual screening

2 Support Vector Machines

3 2D Kernel

4 3D Pharmacophore Kernel

5 Conclusion

Space of pharmacophore

3-points pharmacophores

A set of 3 atoms, and 3 inter-atom distances:

 $\mathcal{T} = \{((x_1, x_2, x_3), (d_1, d_2, d_3)), x_i \in \{\text{atom types}\}; d_i \in \mathbb{R}\}$

Jean-Philippe Vert (Mines de Paris)

Pharmacophore fingerprint

- Discretize the space of pharmacophores T (e.g., 6 atoms or groups of atoms, 6-7 distance bins) into a finite set T_d
- Count the number of occurrences \(\phi_t(x)\) of each pharmacophore bin t in a given molecule x, to form a pharmacophore fingerprint.

3D kernel

A simple 3D kernel is the inner product of pharmacophore fingerprints:

$$\mathcal{K}(\mathbf{x},\mathbf{x}') = \sum_{t\in\mathcal{T}_d} \phi_t(\mathbf{x})\phi_t(\mathbf{x}') \ .$$

Discretization of the pharmacophore space

Common issues

- If the bins are too large, then they are not specific enough
- If the bins are too large, then they are too specific

In all cases, the arbitrary position of boundaries between bins affects the comparison:

Kernels between pharmacophores

A small trick

$$\begin{split} \mathcal{K}(x,y) &= \sum_{t \in \mathcal{T}_d} \phi_t(x) \phi_t(y) \\ &= \sum_{t \in \mathcal{T}_d} (\sum_{p_x \in \mathcal{P}(x)} \mathbf{1}(\operatorname{bin}(\mathbf{p}_x) = \mathbf{t})) (\sum_{p_y \in \mathcal{P}(y)} \mathbf{1}(\operatorname{bin}(\mathbf{p}_y) = \mathbf{t})) \\ &= \sum_{p_x \in \mathcal{P}(x)} \sum_{p_y \in \mathcal{P}(y)} \mathbf{1}(\operatorname{bin}(\mathbf{p}_x) = \operatorname{bin}(\mathbf{p}_y)) \end{split}$$

General pharmacophore kernel

$$K(x, y) = \sum_{p_x \in \mathcal{P}(x)} \sum_{p_y \in \mathcal{P}(y)} K_{\mathcal{P}}(p_x, p_y)$$

• Discretizing the pharmacophore space is equivalent to taking the following kernel between individual pharmacophores:

$$K_P(p_1, p_2) = \mathbf{1} \left(\text{bin}(\mathbf{p}_{\mathbf{x}}) = \text{bin}(\mathbf{p}_{\mathbf{y}}) \right)$$

- For general kernels, there is no need for discretization!
- For example, is $d(p_1, p_2)$ is a Euclidean distance between pharmacophores, take:

$$K_{P}(p_{1},p_{2}) = \exp\left(-\gamma d\left(p_{1},p_{2}\right)\right) .$$

4 public datasets

- BZR: ligands for the benzodiazepine receptor
- COX: cyclooxygenase-2 inhibitors
- DHFR: dihydrofolate reductase inhibitors
- ER: estrogen receptor ligands

	TRAIN		TEST		
	Pos	Neg	Pos	Neg	
BZR	94	87	63	62	
COX	87	91	61	64	
DHFR	84	149	42	118	
ER	110	156	70	110	

Results (accuracy)

Kernel	BZR	COX	DHFR	ER
2D (Tanimoto)	71.2	63.0	76.9	77.1
3D fingerprint	75.4	67.0	76.9	78.6
3D not discretized	76.4	69.8	81.9	79.8

Jean-Philippe Vert (Mines de Paris)

Virtual screening

2 Support Vector Machines

3 2D Kernel

4) 3D Pharmacophore Kernel

- SVM is a powerful and flexible machine learning algorithm. The kernel trick allows the manipulation of non-vectorial objects at the cost of defining a kernel function.
- The 2D kernel for molecule extends classical fingerprint-based approches. It solves the problem of bit clashes, and allows infinite fingerprints.
- The 3D kernel for molecule extends classical pharmacophore fingerprint-based approaches. It solves the problems of bit clashes and of discretization.
- Both kernels improve upon their classical counterparts, and provide competitive results on benchmark datasets.

- Further validation of the kernel approach on larger datasets.
- Learning from multiple conformers.
- Combination of ligand-based virtual screening with docking approaches.

- Pierre Mahé (CBIO)
- Tatsuya Akutsu, Nobuhisa Ueda, Jean-Luc Perret (Kyoto University)
- Liva Ralaivola (U Marseille)

- Kashima, H., Tsuda, K., and Inokuchi, A. Marginalized kernels between labeled graphs. Proceedings of the 20th ICML, 2003, pp. 321-328.
- L. Ralaivola, S. J. Swamidass, H. Saigo, and P. Baldi. Graph kernels for chemical informatics. Neural Netw., 18(8):1093-1110, Sep 2005.
- P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret, and J.-P. Vert. Graph kernels for molecular structure-activity relationship analysis with SVM. J. Chem. Inf. Model., 45(4):939-951, 2005.
- P. Mahé, L. Ralaivola, V. Stoven, and J-P Vert. The pharmacophore kernel for virtual screening with SVM. Technical Report Technical Report HAL:ccsd-00020066, http://hal.ccsd.cnrs.fr/ccsd-00020066, march 2006.
- Open-source kernels for chemoinformatics: http://chemcpp.sourceforge.net/

