Spectral approaches to integrate gene expression and gene networks

Jean-Philippe Vert

Jean-Philippe.Vert@ensmp.fr

Center for Computational Biology Ecole des Mines de Paris

ESBIC meeting, Institut Curie, July 6, 2006

ARMINES contribution to ESBIC

- Develop methods for analysis of gene expression data
- Develop methods for integration of heterogeneous data, in particular expression and pathways
- Integrate these tools in the ESBIC standards

Outline

Olassification and interpretation of microarray data

Including pathway information

Classical setting

Data available

- Gene expression measures for more than 10k genes
- Measured on less than 100 samples of two (or more) different classes (e.g., different tumors)

Goal

- Design a classifier to automatically assign a class to future samples from their expression profile
- Interpret biologically the differences between the classes

Classical setting

Data available

- Gene expression measures for more than 10k genes
- Measured on less than 100 samples of two (or more) different classes (e.g., different tumors)

Goal

- Design a classifier to automatically assign a class to future samples from their expression profile
- Interpret biologically the differences between the classes

Linear classifiers

The approach

- Each sample is represented by a vector $x = (x_1, ..., x_p)$ where $p > 10^5$ is the number of probes
- Classification: given the set of labeled sample, learn a linear decision function:

$$f(x) = \sum_{i=1}^{p} \beta_i x_i + \beta_0 ,$$

that is positive for one class, negative for the other

• Interpretation: the weight β_i quantifies the influence of gene i for the classification

Linear classifiers

Pitfalls

- No robust estimation procedure exist for 100 samples in 10⁵ dimensions!
- It is necessary to reduce the complexity of the problem with prior knowledge.

Example: Norm Constraints

The approach

A common method in statistics to learn with few samples in high dimension is to constrain the norm of β , e.g.:

- Euclidean norm (support vector machines, ridge regression): $\|\beta\|_2 = \sum_{i=1}^p \beta_i^2$
- L_1 -norm (lasso regression) : $\|\beta\|_1 = \sum_{i=1}^p |\beta_i|$

Pros

 Good performance in classification

Cons

- Limited interpretation (small weights)
- No prior biological knowledge

Example 2: Feature Selection

The approach

Constrain most weights to be 0, i.e., select a few genes (< 20) whose expression are enough for classification. Interpretation is then about the selected genes.

Pros

- Good performance in classification
- Useful for biomarker selection
- Apparently easy interpretation

Cons

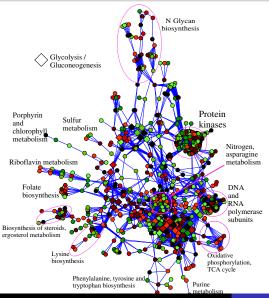
- The gene selection process is usually not robust
- Wrong interpretation is the rule (too much correlation between genes)

Pathway interpretation

Motivation

- Basic biological functions are usually expressed in terms of pathways and not of single genes (metabolic, signaling, regulatory)
- Many pathways are already known
- How to use this prior knowledge to constrain the weights to have an interpretation at the level of pathways?

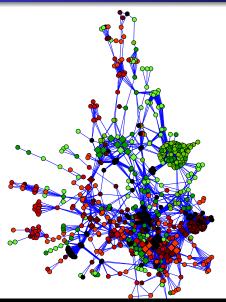
Pathway interpretation



Bad example

- The graph is the complete known metabolic network of the budding yeast (from KEGG database)
- We project the classifier weight learned by a SVM
- Good classification accuracy, but no possible interpretation!

Pathway interpretation



Good example

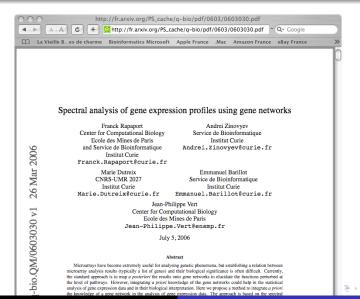
- The graph is the complete known metabolic network of the budding yeast (from KEGG database)
- We project the classifier weight learned by a spectral SVM
- Good classification accuracy, and good interpretation!

Spectral SVM

Short description

- Pre-process each microarray profile to filter out the high frequencies with respect to the known pathways. This involves discrete Fourier transforms + spectral graph theory.
- Perform classical SVM on the smoothed expression profiles

More details



Discussion

You will always have an interpretable model because you enforce it. Can we trust is?

- Any method must use prior knowledge because of the n << p problem.
- In many cases the "true" classifier is more likely to have a pathway interpretation than to be based on a few genes only.

There are many cases where smoothness is not expected on the pathway (negative regulation...)

- We just enforce a global smoothness, local jumps are possible (although penalized).
- As more data are available, a more precise estimation is possible.

Conclusion

- Manipulating gene expression data is difficult for statistical reasons.
- Inclusion of prior knowledge is required (e.g., feature selection)
- Known pathways form a natural prior knowledge
- This results in classifiers with good accuracy and interpretability.

Ongoing and future work

- Validation on tumour data
- Extension to non-smooth assumption (inhibition...)
- Integration with other softwares

Acknowledgements

Franck Rapaport, Emmanuel Barillot, Andrei Zynoviev, Marie Dutreix (Institut Curie)