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Part 1

A short introduction to
molecular biology
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Short history of genomics

1866 : Laws of heredity (Mendel)
1909 : Morgan and the drosophilists
1944 : DNA supports heredity (Avery)
1953 : Structure of DNA (Crick and Watson)
1966 : Genetic code (Nirenberg)
1960-70 : Genetic engineering
1977 : Method for sequencing (Sanger)
1982 : Creation of Genbank
1990 : Human genome project launched
2003 : Human genome project completed
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A cell
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Chromosomes
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Chromosomes and DNA
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Structure of DNA

“We wish to suggest a
structure for the salt of
desoxyribose nucleic acid
(D.N.A.). This structure have
novel features which are of
considerable biological
interest” (Watson and Crick,
1953)
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The double helix
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Genomes

(Almost) all cells in an organism share the same DNA, called genome.

Organism Chromosomes Genome size (bp)
Bacteria 1 400,000 a 10,000,000

Yeast 12 14,000,000
Fly 4 300,000,000

Human 46 6,000,000,000
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Central dogma
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Proteins
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Genetic code
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Human genome project

Goal : sequence the 3,000,000,000 bases of the human genome
Consortium with 20 labs, 6 countries
Cost : about 3,000,000,000 USD
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2003: End of genomics era

Findings
About 25,000 genes only (representing 1.2% of the genome)
Automatic gene finding with graphical models
97% of the genome is considered “junk DNA”
Superposition of a variety of signals (many to be discovered)
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The post-genomic technological revolution
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Example: DNA microarrays
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Data available

Sequences (genomes, genes, proteins, regulatory regions,
peptides...)
3D structures (proteins, DNA, RNA...)
Networks (interaction, regulation...)
Time series (transcriptome, proteome, ...)
Population data (SNPs, virus evolution...)
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Expectations

Biology
Structure and functions of all molecules
Interaction, regulation, systems biology
Evolution, reverse engineering, synthetic biology..

Medicine
Molecular basis of disease (cancer, virus infection...)
Early diagnosis and prognosis
New drug targets and drugs
Personalized medicine (pharmagenomics)
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Some computational challenges

Genomics
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Some computational challenges

Proteomics

Pharmacogenomics
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Some computational challenges

Proteomics

Pharmacogenomics
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Some computational challenges

Systems biology
Reconstruction of gene networks from large-scale heterogeneous
data
Simulation of complex biological systems (at the level of pathways,
cell, tissues or whole organism)
Modeling of systems-level phenomena
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Summary

Data revolution is occurring in biology, data-driven biology has
started
Despite the cultural gap math / computer science / physics are
increasingly needed
Machine learning is already playing a central role, and is likely to
keep doing so
Data are often noisy, structured, heterogeneous etc...
Problems are usually not well defined
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Part 2

Kernels and Kernel Methods
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Biological data

Modern technologies provide data that are often:
in large dimension (e.g., microarrays or proteomics data)
structured (e.g., gene sequences, small molecules, interaction
networks, phylogenetic trees...)
heterogeneous (e.g., vectors, sequences, graphs to describe the
same protein)
in large quantities (e.g., > 106 protein sequences)

SVM and kernel methods lend themselves particularly well to these
constraints (of course, there is much room for other approaches!)
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Kernel methods for bioinformatics

Features
SVM and kernel method have in particular the following properties:

statistical approaches to process large datasets
kernels for structured objects
multiple kernel learning for heterogeneous data

References
More than 500 references since 1998:
http://cbio.ensmp.fr/˜vert/svn/bibli/html/biosvm.html
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Motivations

Develop versatile algorithms to process and analyze data
No hypothesis made regarding the type of data (vectors, strings,
graphs, images, ...)
Instead we study methods based on pairwise comparisons.

1    0.5  0.3
0.5  1    0.6
0.3  0.6  1

K=

X

S
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Positive Definite Kernels

Definition
A positive definite (p.d.) kernel on the set X is a function
K : X × X → R symmetric:

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
= K

(
x′, x

)
,

and which satisfies, for all N ∈ N, (x1, x2, . . . , xN) ∈ XN et
(a1, a2, . . . , aN) ∈ RN :

N∑
i=1

N∑
j=1

aiajK
(
xi , xj

)
≥ 0.
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Examples

Classical kernels for vectors (X = Rp) include:
The linear kernel

Klin
(
x, x′

)
= x>x′ .

The polynomial kernel

Kpoly
(
x, x′

)
=

(
x>x′ + a

)d
.

The Gaussian RBF kernel:

KGaussian
(
x, x′

)
= exp

(
−‖x− x′ ‖2

2σ2

)
.
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Kernels as Inner Products

Theorem (Aronszajn, 1950)
K is a p.d. kernel on the set X if and only if there exists a Hilbert space
H and a mapping

Φ : X 7→ H ,

such that, for any x, x′ in X :

K
(
x, x′

)
=

〈
Φ (x) ,Φ

(
x′

)〉
H .

φ
X F
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Proof

If K can be written as:

K
(
x, x′

)
=

〈
Φ (x) ,Φ

(
x′

)〉
H ,

then it is p.d. because:
〈Φ (x) ,Φ (x′)〉H = 〈Φ (x′) ,Φ (x)〉H ,∑N

i=1
∑N

j=1 aiaj
〈
Φ (xi) ,Φ

(
xj

)〉
H = ‖

∑N
i=1 aiΦ (xi) ‖2 ≥ 0 .

The converse was proved by Mercer in 1905 for continuous K on
compact X (called Mercer kernels), in 1941 by Kolmogorov for
countable X , and by Aronszajn (1950) for the general case. In order to
prove it in full generality we must introduce the notion of reproducing
Hilbert space.
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Reproducing Kernel Hilbert Space

To each p.d. kernel on X is associated a unique Hilbert space of
function X → R, called the reproducing kernel Hilbert space
(RKHS) H.
Typical functions are:

f (x) =
n∑

i=1

αiK (xi , x) ,

with norm

‖ f ‖2
H =

n∑
i=1

n∑
j=1

αiαjK
(
xi , xj

)
.
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Reproducing property

For any x ∈ X let Kx : X → R be defined by:

Kx
(
x′

)
= K

(
x, x′

)
, ∀x′ ∈ X .

In the RKHS it holds that:

f (x) = 〈f , Kx〉H , ∀f ∈ H, x ∈ X .

Reproducing property:

K
(
x, x′

)
= 〈Kx, Kx′〉H , ∀x, x′ ∈ X .

This proves Aronsjazn’s theorem by taking Φ : X → H defined by

Φ(x) = Kx . �
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Characterization of RKHS

In fact the RKHS is completely characterized by the following
properties:

Theorem
The RKHS H is the unique Hilbert space of functions that satisfies:

For any x ∈ X , Kx ∈ H,
For any x ∈ X and f ∈ H,

f (x) = 〈f , Kx〉H .
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Smoothness functional

By Cauchy-Schwarz we have, for any function f ∈ H and any two
points x, x′ ∈ X :∣∣ f (x)− f

(
x′

) ∣∣ = | 〈f , Kx − Kx′〉H |
≤ ‖ f ‖H × ‖Kx − Kx′ ‖H
= ‖ f ‖H × dK

(
x, x′

)
.

The norm of a function in the RKHS controls how fast the function
varies over X with respect to the geometry defined by the kernel.

Small norm =⇒ slow variations.
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Example: Linear kernel


Klin (x, x′) = x>x′ .
f (x) = w>x ,

‖ f ‖H = ‖w ‖2 .

||f||=1||f||=2 ||f||=0.5
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Examples: Gaussian RBF kernel

KGaussian
(
x, x′

)
= exp

(
−‖x− x′ ‖2

2σ2

)
,

f (x) =
n∑

i=1

αi exp
(
−‖x− xi ‖2

2σ2

)
,

‖ f ‖2
H =

n∑
i=1

n∑
j=1

αiαj exp
(
−‖x− xi ‖2

2σ2

)
=

∫ ∣∣∣ f̂ (ω)
∣∣∣2 e

σ2ω2
2 dω .
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Pattern recognition and regression

Classical setting
Input variables x ∈ X
Output y ∈ Y with Y = {−1, 1} (pattern recognition) or Y = R
(regression)
Training set S = {(x1, y1) , . . . , (xn, yn)}.
Goal: learn the mapping f : X → Y
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Kernel methods

General formulation
1 Define a loss function L(y , ŷ)

2 Solve the problem:

min
f∈H

1
n

n∑
i=1

L (yi , f (xi)) + λ‖ f ‖2
H .

λ controls the trade-off between fitting the data and being a smooth
function.
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Examples

Loss functions
Support vector machines for classification:

Lhinge(y , ŷ) = max(0, 1− yŷ) .

Kernel logistic regression

Llogit = log
(

1 + e−yŷ
)

.

Kernel ridge regression

Lsquare(y , ŷ) = (y − ŷ)2 .
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Kernel methods in practice

Representer theorem: the solution of the optimization problem can
in fact always be expanded as:

f̃ (x) =
n∑

i=1

αiK (xi , x)

Plugging this into the optimization problem therefore boils down to
a n-dimensional optimization problem (convex if L is convex)
The complexity of the algorithms depend on n, the number of
points
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Summary

A kernel defines an implicit geometry on the space of data,
although data do not need to have any prior geometric/algebric
structure
Kernel methods learn functions that tend to be smooth with
respect to this geometry
Kernel engineering is the problem of designing specific kernel for
specific data and specific tasks. Good place to put prior
knowledge!
We will now see on a practical examples different technical tricks
to design kernels.
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Part 3

Kernels for Biological
Sequences
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Protein sequence

A : Alanine V : Valine L : Leucine

F : Phenylalanine P : Proline M : Méthionine

E : Acide glutamique K : Lysine R : Arginine

T : Threonine C : Cysteine N : Asparagine

H : Histidine V : Thyrosine W : Tryptophane

I : Isoleucine S : Sérine Q : Glutamine

D : Acide aspartique G : Glycine
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Challenges with protein sequences

A protein sequences can be seen as a variable-length sequence
over the 20-letter alphabet of amino-acids, e.g., insuline:
FVNQHLCGSHLVEALYLVCGERGFFYTPKA

These sequences are produced at a fast rate (result of the
sequencing programs)
Need for algorithms to compare, classify, analyze these
sequences
Applications: classification into functional or structural classes,
prediction of cellular localization and interactions, ...
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Kernels for protein sequences

Kernel methods have been widely investigated since Jaakkola et
al.’s seminal paper (1998).
What is a good kernel?

it should be mathematically valid (symmetric, p.d. or c.p.d.)
fast to compute
adapted to the problem (give good performances)
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Kernel engineering for protein sequences

Define a (possibly high-dimensional) feature space of interest
Physico-chemical kernels
Spectrum, mismatch, substring kernels
Pairwise, motif kernels

Derive a kernel from a generative model
Fisher kernel
Mutual information kernel
Marginalized kernel

Derive a kernel from a similarity measure
Local alignment kernel
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Vector embedding for strings

The idea
Represent each sequence x by a fixed-length numerical vector
Φ (x) ∈ Rn. How to perform this embedding?

Physico-chemical kernel
Extract relevant features, such as:

length of the sequence
time series analysis of numerical physico-chemical properties of
amino-acids along the sequence (e.g., polarity, hydrophobicity),
using for example:

Fourier transforms (Wang et al., 2004)
Autocorrelation functions (Zhang et al., 2003)

rj =
1

n − j

n−j∑
i=1

hihi+j
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Substring indexation

The approach
Alternatively, index the feature space by fixed-length strings, i.e.,

Φ (x) = (Φu (x))u∈Ak

where Φu (x) can be:
the number of occurrences of u in x (without gaps) : spectrum
kernel (Leslie et al., 2002)
the number of occurrences of u in x up to m mismatches (without
gaps) : mismatch kernel (Leslie et al., 2004)
the number of occurrences of u in x allowing gaps, with a weight
decaying exponentially with the number of gaps : substring kernel
(Lohdi et al., 2002)
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Example: spectrum kernel

The 3-spectrum of
x = CGGSLIAMMWFGV

is:
(CGG,GGS,GSL,SLI,LIA,IAM,AMM,MMW,MWF,WFG,FGV) .

Let Φu (x) denote the number of occurrences of u in x. The
k -spectrum kernel is:

K
(
x, x′

)
:=

∑
u∈Ak

Φu (x) Φu
(
x′

)
.

This is formally a sum over |A|k terms, but at most |x | − k + 1
terms are non-zero in Φ (x)
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Substring indexation in practice

Implementation in O(|x|+ |x′|) in memory and time for the
spectrum and mismatch kernels (with suffix trees)
Implementation in O(|x| × |x′|) in memory and time for the
substring kernels
The feature space has high dimension (|A|k ), so learning requires
regularized methods (such as SVM)
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Dictionary-based indexation

The approach
Chose a dictionary of sequences D = (x1, x2, . . . , xn)

Chose a measure of similarity s (x, x′)
Define the mapping ΦD (x) = (s (x, xi))xi∈D

Examples
This includes:

Motif kernels (Logan et al., 2001): the dictionary is a library of
motifs, the similarity function is a matching function
Pairwise kernel (Liao & Noble, 2003): the dictionary is the training
set, the similarity is a classical measure of similarity between
sequences.
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Probabilistic models for sequences

Probabilistic modeling of biological sequences is older than kernel
designs. Important models include HMM for protein sequences, SCFG
for RNA sequences.

Parametric model
A model is a family of distribution

{Pθ, θ ∈ Θ ⊂ Rm} ⊂ M+
1 (X )
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Fisher kernel

Definition
Fix a parameter θ0 ∈ Θ (e.g., by maximum likelihood over a
training set of sequences)
For each sequence x, compute the Fisher score vector:

Φθ0(x) = ∇θ log Pθ(x)|θ=θ0 .

Form the kernel (Jaakkola et al., 1998):

K
(
x, x′

)
= Φθ0(x)>I(θ0)

−1Φθ0(x
′) ,

where I(θ0) = Eθ0

[
Φθ0(x)Φθ0(x)>

]
is the Fisher information matrix.
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Fisher kernel properties

The Fisher score describes how each parameter contributes to
the process of generating a particular example
The Fisher kernel is invariant under change of parametrization of
the model
A kernel classifier employing the Fisher kernel derived from a
model that contains the label as a latent variable is, asymptotically,
at least as good a classifier as the MAP labelling based on the
model (under several assumptions).
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Fisher kernel in practice

Φθ0(x) can be computed explicitly for many models (e.g., HMMs)
I(θ0) is often replaced by the identity matrix
Several different models (i.e., different θ0) can be trained and
combined
Feature vectors are explicitly computed
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Mutual information kernels

Definition
Chose a prior w(dθ) on the measurable set Θ

Form the kernel (Seeger, 2002):

K
(
x, x′

)
=

∫
θ∈Θ

Pθ(x)Pθ(x′)w(dθ) .

No explicit computation of a finite-dimensional feature vector
K (x, x′) =< φ (x) , φ (x′) >L2(w) with

φ (x) = (Pθ (x))θ∈Θ .
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Example: coin toss

Let Pθ(X = 1) = θ and Pθ(X = 0) = 1− θ a model for random
coin toss, with θ ∈ [0, 1].
Let dθ be the Lebesgue measure on [0, 1]

The mutual information kernel between x = 001 and x′ = 1010 is:{
Pθ (x) = θ (1− θ)2 ,

Pθ (x′) = θ2 (1− θ)2 ,

K
(
x, x′

)
=

∫ 1

0
θ3 (1− θ)4 dθ =

3!4!

8!
=

1
280

.
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Context-tree model

Definition
A context-tree model is a variable-memory Markov chain:

PD,θ(x) = PD,θ (x1 . . . xD)
n∏

i=D+1

PD,θ (xi | xi−D . . . xi−1)

D is a suffix tree
θ ∈ ΣD is a set of conditional probabilities (multinomials)
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Context-tree model: example

P(AABACBACC) = P(AAB)θAB(A)θA(C)θC(B)θACB(A)θA(C)θC(A) .
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The context-tree kernel

Theorem (Cuturi et al., 2004)
For particular choices of priors, the context-tree kernel:

K
(
x, x′

)
=

∑
D

∫
θ∈ΣD

PD,θ(x)PD,θ(x′)w(dθ|D)π(D)

can be computed in O(|x|+ |x′|) with a variant of the Context-Tree
Weighting algorithm.
This is a valid mutual information kernel.
The similarity is related to information-theoretical measure of
mutual information between strings.
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Marginalized kernels

Definition
For any observed data x ∈ X , let a latent variable y ∈ Y be
associated probabilistically through a conditional probability
Px (dy).
Let KZ be a kernel for the complete data z = (x, y)

Then the following kernel is a valid kernel on X , called a
marginalized kernel (Kin et al., 2002):

KX
(
x, x′

)
:= EPx(dy)×Px′ (dy′)KZ

(
z, z′

)
=

∫ ∫
KZ

(
(x, y) ,

(
x′, y′

))
Px (dy) Px′

(
dy′

)
.
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Marginalized kernels: proof of positive definiteness

KZ is p.d. on Z. Therefore there exists a Hilbert space H and
ΦZ : Z → H such that:

KZ
(
z, z′

)
=

〈
ΦZ (z) ,ΦZ

(
z′

)〉
H .

Marginalizing therefore gives:

KX
(
x, x′

)
= EPx(dy)×Px′ (dy′)KZ

(
z, z′

)
= EPx(dy)×Px′ (dy′)

〈
ΦZ (z) ,ΦZ

(
z′

)〉
H

=
〈
EPx(dy)ΦZ (z) , EPx(dy′)ΦZ

(
z′

)〉
H ,

therefore KX is p.d. on X . �
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Example: HMM for normal/biased coin toss

S

B

0.5

0.5

0.1
0.1

0.05

0.05N

E

0.85

0.85

Normal (N) and biased (B)
coins (not observed)

Observed output are 0/1 with probabilities:{
π(0|N) = 1− π(1|N) = 0.5,

π(0|B) = 1− π(1|B) = 0.8.

Example of realization (complete data):

NNNNNBBBBBBBBBNNNNNNNNNNNBBBBBB
1001011101111010010111001111011
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1-spectrum kernel on complete data

If both x ∈ A∗ and y ∈ S∗ were observed, we might rather use the
1-spectrum kernel on the complete data z = (x, y):

KZ
(
z, z′

)
=

∑
(a,s)∈A×S

na,s (z) na,s (z) ,

where na,s (x, y) for a = 0, 1 and s = N, B is the number of
occurrences of s in y which emit a in x.
Example:

z =1001011101111010010111001111011,
z′ =0011010110011111011010111101100101,

KZ
(
z, z′

)
= n0 (z) n0

(
z′

)
+ n0 (z) n0

(
z′

)
+ n1 (z) n1

(
z′

)
+ n1 (z) n1

(
z′

)
= 7× 15 + 9× 12 + 13× 6 + 2× 1 = 293.
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1-spectrum marginalized kernel on observed data

The marginalized kernel for observed data is:

KX
(
x, x′

)
=

∑
y,y′∈S∗

KZ ((x, y) , (x, y)) P (y|x) P
(
y′|x′

)
=

∑
(a,s)∈A×S

Φa,s (x) Φa,s
(
x′

)
,

with
Φa,s (x) =

∑
y∈S∗

P (y|x) na,s (x, y)
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Computation of the 1-spectrum marginalized kernel

Φa,s (x) =
∑
y∈S∗

P (y|x) na,s (x, y)

=
∑
y∈S∗

P (y|x)

{
n∑

i=1

δ (xi , a) δ (yi , s)

}

=
n∑

i=1

δ (xi , a)

 ∑
y∈S∗

P (y|x) δ (yi , s)


=

n∑
i=1

δ (xi , a) P (yi = s|x) .

and P (yi = s|x) can be computed efficiently by forward-backward
algorithm!

Jean-Philippe Vert (ParisTech) Kernel Methods in Bioinformatics 73 / 141



HMM example (DNA)
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HMM example (protein)

Jean-Philippe Vert (ParisTech) Kernel Methods in Bioinformatics 75 / 141



Marginalized kernels in practice

Examples
Spectrum kernel on the hidden states of a HMM for protein
sequences (Tsuda et al., 2002)
Kernels for RNA sequences based on SCFG (Kin et al., 2002)
Kernels for graphs based on random walks on graphs (Kashima et
al., 2004)
Kernels for multiple alignments based on phylogenetic models
(Vert et al., 2005)
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Marginalized kernels: example

PC2

PC1

A set of 74 human tRNA
sequences is analyzed using
a kernel for sequences (the
second-order marginalized
kernel based on SCFG). This
set of tRNAs contains three
classes, called Ala-AGC
(white circles), Asn-GTT
(black circles) and Cys-GCA
(plus symbols) (from Tsuda
et al., 2003).
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Sequence alignment

Motivation
How to compare 2 sequences?

x1 = CGGSLIAMMWFGV
x2 = CLIVMMNRLMWFGV

Find a good alignment:

CGGSLIAMM----WFGV
|...|||||....||||
C---LIVMMNRLMWFGV
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Alignment score

In order to quantify the relevance of an alignment π, define:
a substitution matrix S ∈ RA×A

a gap penalty function g : N → R
Any alignment is then scored as follows

CGGSLIAMM----WFGV
|...|||||....||||
C---LIVMMNRLMWFGV

sS,g(π) = S(C, C) + S(L, L) + S(I, I) + S(A, V ) + 2S(M, M)

+ S(W , W ) + S(F , F ) + S(G, G) + S(V , V )− g(3)− g(4)
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Local alignment kernel

Smith-Waterman score
The widely-used Smith-Waterman local alignment score is defined
by:

SWS,g(x, y) := max
π∈Π(x,y)

sS,g(π).

It is symmetric, but not positive definite...

LA kernel
The local alignment kernel:

K (β)
LA (x, y) =

∑
π∈Π(x,y)

exp
(
βsS,g (x, y, π)

)
,

is symmetric positive definite (Vert et al., 2004).
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LA kernel is p.d.: proof

If K1 and K2 are p.d. kernels for strings, then their convolution
defined by:

K1 ? K2(x, y) :=
∑

x1x2=x,y1y2=y

K1(x1, y1)K2(x2, y2)

is also p.d. (Haussler, 1999).
LA kernel is p.d. because it is a convolution kernel (Haussler,
1999):

K (β)
LA =

∞∑
n=0

K0 ?
(

K (β)
a ? K (β)

g

)(n−1)
? K (β)

a ? K0.

where K0, Ka and Kg are three basic p.d. kernels (Vert et al.,
2004).
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LA kernel in practice

Implementation by dynamic programming in O(|x| × |x′|)

a:0/1

a:0/1

a:0/1

a:0/1

0:a/1

0:a/1

0:a/1 0:a/1

0:a/1

0:0/1

0:0/1

0:0/1

0:0/1

0:0/1

0:0/1

0:a/1

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)
a:0/D

a:0/E

0:b/E

0:b/D

0:b/D

B M E

XX X

YY Y

1

1 2

2

In practice, values are too large (exponential scale) so taking its
logarithm is a safer choice (but not p.d. anymore!)
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Remote homology

Sequence similarity

Clo
se

 h
om

olo
gs

Tw
ili

ght z
one

N
on h

om
olo

gs

Homologs have common ancestors
Structures and functions are more conserved than sequences
Remote homologs can not be detected by direct sequence
comparison
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SCOP database

Remote homologs

Superfamily

Family

SCOP

Close homologs

Fold
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A benchmark experiment

Goal: recognize directly the superfamily
Training: for a sequence of interest, positive examples come from
the same superfamily, but different families. Negative from other
superfamilies.
Test: predict the superfamily.
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Difference in performance
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ROC50

SVM-LA
SVM-pairwise

SVM-Mismatch
SVM-Fisher

Performance on the SCOP superfamily recognition benchmark (from
Vert et al., 2004).
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Summary

A variety of principles for string kernel design have been
proposed.
Good kernel design is important for each data and each task.
Performance is not the only criterion.
Still an art, although principled ways have started to emerge.
Their application goes beyond computational biology.
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Part 4

Kernels on graphs
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Graphs

Motivation
Many data come in the form of nodes in a graph for different reasons:

by definition (interaction network, internet...)
by discretization / sampling of a continuous domain
by convenience (e.g., if only a similarity function if available)
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Example: web
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Example: social network
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Example: protein-protein interaction
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Kernel on a graph

φ

We need a kernel K (x, x′) between nodes of the graph.
Example: predict gene protein functions from high-throughput
protein-protein interaction data.
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Notations

X = (x1, . . . , xm) is finite.
For x, x′ ∈ X , we note x ∼ x′ to indicate the existence of an edge
between x and x′

We assume that there is no self-loop x ∼ x, and that there is a
single connected component.
The adjacency matrix is A ∈ Rm×m:

Ai,j =

{
1 if i ∼ j ,
0 otherwise.

D is the diagonal matrix where Di,i is the number of neighbors of
xi (Di,i =

∑m
i=1 Ai,j ).
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Example

1

2

3

4

5

A =


0 0 1 0 0
0 0 1 0 0
1 1 0 1 0
0 0 1 0 1
0 0 0 1 0

 , D =


1 0 0 0 0
0 1 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 1


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General remarks

X being finite, any symmetric semi-definite matrix K defines a
valid p.d. kernel on X .
How to “translate” the graph topology into the kernel?

Direct geometric approach: Ki,j should be “large” when xi and xj
are “close” to each other on the graph?
Functional approach: ‖ f ‖K should be “small” when f is “smooth” on
the graph?
Link discrete/continuous: is there an equivalent to the continuous
Gaussien kernel on the graph (e.g., limit by fine discretization)?
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Geometric approach

Remember : for X = Rn, the Gaussian RBF kernel is:

K
(
x, x′

)
= exp

(
−d

(
x, x′

)2
/2σ2

)
,

where d (x, x′) is the Euclidean distance.
If X is a graph, let d (x, x′) be the shortest-path distance between
x and x′.
Problem: exp

(
−d (x, x′)2 /2σ2

)
is not d.p. in general.

Big problem: no simple criterion (to my knowledge) to check when
K (x, x′) = φ (d (x, x′)) is p.d. or not...
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Motivation

In this section we define a priori a smoothness functional on the
functions f : X → R.
We then show that it defines a RKHS and identify the
corresponding kernel
As preliminaries we need to introduce the Laplacian of the graph.
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Graph Laplacian

Definition
The Laplacian of the graph is the matrix L = A− D.

1

2

3

4

5

L = A− D =


−1 0 1 0 0
0 −1 1 0 0
1 1 −3 1 0
0 0 1 −2 1
0 0 0 1 −1


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Properties of the Laplacian

Lemma
Let L = A− D be the Laplacian of the graph:

For any f : X → R,

Ω(f ) :=
∑
i∼j

(
f (xi)− f

(
xj

))2
= −f>Lf

−L is a symmetric positive semi-definite matrix
0 is an eigenvalue with multiplicity 1 associated to the constant
eigenvector 1 = (1, . . . , 1)

The image of L is

Im(L) =

{
f ∈ Rm :

m∑
i=1

fi = 0

}

Jean-Philippe Vert (ParisTech) Kernel Methods in Bioinformatics 104 / 141



Proof: link between Ω(f ) and L

Ω (f ) =
∑
i∼j

(
f (xi)− f

(
xj

))2

=
∑
i∼j

(
f (xi)

2 + f
(
xj

)2 − 2f (xi) f
(
xj

))

=
m∑

i=1

Di,i f (xi)
2 − 2

∑
i∼j

f (xi) f
(
xj

)
= f>Df − f>Af

= −f>Lf
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Proof: eigenstructure of L

L is symmetric because A and D are symmetric.
For any f ∈ Rm, −f>Lf = Ω(f ) ≥ 0, therefore the (real-valued)
eigenvalues of −L are ≥ 0 : −L is therefore positive semi-definite.
f is an eigenvector associated to eigenvalue 0
iff f>Lf = 0
iff

∑
i∼j

(
f (xi)− f

(
xj

))2
= 0 ,

iff f (xi) = f
(
xj

)
when i ∼ j ,

iff f is constant (because the graph is connected).
L being symmetric, Im(L) is the orthogonal supplement of Ker(L),
that is, the set of functions orthogonal to 1. �
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Our first graph kernel

We are now ready to present a RKHS on the vertices of the graph and
its associated kernel:

Theorem

The set H =
{

f ∈ Rm :
∑m

i=1 fi = 0
}

endowed with the norm:

Ω (f ) =
∑
i∼j

(
f (xi)− f

(
xj

))2

is a RKHS whose reproducing kernel is (−L)∗, the pseudo-inverse of
the graph Laplacian.
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Pseudo-inverse of −L

Remember the pseudo-inverse (−L)∗ of −L is the linear application
that is equal to:

0 on Ker(−L)

(−L)−1 on Im(−L), that is, if we write:

−L =
m∑

i=1

λiuiu>i

the eigendecomposition of −L:

(−L)∗ =
∑
λi 6=0

(λi)
−1 uiu>i .

In particular it holds that (−L)∗(−L) = (−L)(−L)∗ = ΠH, the
projection onto Im(−L) = H.

Jean-Philippe Vert (ParisTech) Kernel Methods in Bioinformatics 108 / 141



Proof of Theorem 7

Resticted to H, the symmetric bilinear form:

〈f , g〉 = −f>Lg

is positive definite (because −L is positive semi-definite, and
H = Im(−L)). It is therefore a scalar product, making of H a
Hilbert space (in fact Euclidean).
The norm in this Hilbert space H is:

‖ f ‖2 = 〈f , f 〉 = −f>Lf = Ω(f ) .
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Proof of Theorem 7 (cont.)

To check that H is a RKHS with reproducing kernel K = (−L)∗, it
suffices to show that:{

∀x ∈ X , Kx ∈ H ,

∀ (x, f ) ∈ X ×H, 〈f , Kx〉 = f (x) .

Ker(K ) = Ker ((−L)∗) = Ker (L), implying K 1 = 0. Therefore,
each row/column of K is in H.
Finally, for any f ∈ H, if we denote by gi = 〈K (i , ·), f 〉 we get:

g = −KLf = −(−L)∗Lf = ΠH(f ) = f .

As a conclusion K = (−L)∗ is the reproducing kernel of H. �
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Interpretation of the Laplacian

dx

f

i−1 i i+1

∆f (x) = f ′′(x)

∼ f ′(x + dx/2)− f ′(x − dx/2)

dx

∼ f (x + dx)− f (x)− f (x) + f (x − dx)

dx2

=
fi−1 + fi+1 − 2f (x)

dx2

=
Lf (i)
dx2 .
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Interpretation of regularization

For f = [0, 1] → R and xi = i/m, we have:

Ω(f ) =
m∑

i=1

(
f
(

i + 1
m

)
− f

(
i
m

))2

∼
m∑

i=1

(
1
m
× f ′

(
i
m

))2

=
1
m
× 1

m

m∑
i=1

f ′
(

i
m

)2

∼ 1
m

∫ 1

0
f ′(t)2dt .
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Motivation

Consider the normalized Gaussian kernel on Rd :

Kt
(
x, x′

)
=

1

(4πt)
d
2

exp
(
−‖x− x′ ‖2

4t

)
.

In order to transpose it to the graph, replacing the Euclidean
distant by the shortest-path distance does not work.
In this section we provide a characterization of the Gaussian
kernel as the solution of a partial differential equation involving the
Laplacian, which we can transpose to the graph: the diffusion
equation.
The solution of the discrete diffusion equation will be called the
diffusion kernel or heat kernel.
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The diffusion equation

Lemma
For any x0 ∈ Rd , the function:

Kx0 (x, t) = Kt (x0, x) =
1

(4πt)
d
2

exp
(
−‖x− x0 ‖2

4t

)
.

is solution of the diffusion equation:

∂

∂t
Kx0 (x, t) = ∆Kx0 (x, t) .

with initial condition Kx0 (x, 0) = δx0(x)

(proof = direct computation).
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Discrete diffusion equation

For finite-dimensional ft ∈ Rm, the diffusion equation becomes:

∂

∂t
ft = Lft

which admits the following solution:

ft = f0etL

with

etL = I + tL +
t2

2!
L2 +

t3

3!
L3 + . . .
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Diffusion kernel (Kondor and Lafferty, 2002)

This suggest to consider:
K = etL

which is indeed symmetric positive semi-definite because if we write:

L =
m∑

i=1

(−λi)uiu>i (λi ≥ 0)

we obtain:

K = etL =
m∑

i=1

e−tλi uiu>i
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Example: complete graph

Ki,j =

{
1+(m−1)e−tm

m for i = j ,
1−e−tm

m for i 6= j .

Jean-Philippe Vert (ParisTech) Kernel Methods in Bioinformatics 118 / 141



Example: closed chain

Ki,j =
1
m

m−1∑
ν=0

exp
[
−2t

(
1− cos

2πν

m

)]
cos

2πν(i − j)
m

.
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Motivation

In this section we show that the diffusion and Laplace kernels can
be interpreted in the frequency domain of functions
This shows that our strategy to design kernels on graphs was
based on (discrete) harmonic analysis on the graph
In fact this powerful approach can be extended to many structures
where harmonic analysis exist: graphs, differentiable manifolds,
groups and semi-groups... but this is certainly beyond this tutorial!
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Spectrum of the diffusion kernel

Let 0 = λ1 > −λ2 ≥ . . . ≥ −λm be the eigenvalues of the
Laplacian:

L =
m∑

i=1

(−λi)uiu>i (λi ≥ 0)

The diffusion kernel Kt is an invertible matrix because its
eigenvalues are strictly positive:

Kt =
m∑

i=1

e−tλi uiu>i
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Norm in the diffusion RKHS

Any function f ∈ Rm can be written as f = K
(
K−1f

)
, therefore its

norm in the diffusion RKHS is:

‖ f ‖2
Kt

=
(

f>K−1
)

K
(

K−1f
)

= f>K−1f

For i = 1, . . . , m, let:
f̂i = u>i f

be the projection of f onto the eigenbasis of K .
We then have:

‖ f ‖2
Kt

= f>K−1f =
m∑

i=1

etλi f̂ 2
i .

This looks similar to
∫ ∣∣∣ f̂ (ω)

∣∣∣2 eσ2ω2
dω ...
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Discrete Fourier transform

Definition

The vector f̂ =
(

f̂1, . . . , f̂m
)>

is called the discrete Fourier transform of
f ∈ Rn

The eigenvectors of the Laplacian are the discrete equivalent to
the sine/cosine Fourier basis on Rn.
The eigenvalues λi are the equivalent to the frequencies (iω)2

Successive eigenvectors “oscillate” increasingly as eigenvalues
get more and more negative.
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Example: eigenvectors of the Laplacian
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Generalization

This observation suggests to define a whole family of kernels:

Kr =
m∑

i=1

r(λi)uiu>i

associated with the following RKHS norms:

‖ f ‖2
Kr

=
m∑

i=1

f̂ 2
i

r(λi)

where r : R+ → R+
∗ is a non-increasing function.
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Example : regularized Laplacian

r(λ) =
1

λ + ε
, ε > 0

K =
m∑

i=1

1
λi + ε

uiu>i = (−L + εI)−1

‖ f ‖2
K = f>K−1f =

∑
i∼j

(
f (xi)− f

(
xj

))2
+ ε

m∑
i=1

f (xi)
2 .
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Motivations

Learning on a graph can be useful by itself (e.g., predict protein
functions from the protein-protein interaction network)
This is a form of semi-supervised learning (unlabeled data can be
used to create the kernel)
The regularization functional can also be used as prior knowledge
in high-dimensional microarray classification.
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Semi-supervised learning
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Semi-supervised learning
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Tumor classification from microarray data

Data available
Gene expression measures for more than 10k genes
Measured on less than 100 samples of two (or more) different
classes (e.g., different tumors)

Goal
Design a classifier to automatically assign a class to future
samples from their expression profile
Interpret biologically the differences between the classes
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Linear classifiers

The approach
Each sample is represented by a vector x = (x1, . . . , xp) where
p > 105 is the number of probes
Classification: given the set of labeled sample, learn a linear
decision function:

f (x) =

p∑
i=1

βixi + β0 ,

that is positive for one class, negative for the other
Interpretation: the weight βi quantifies the influence of gene i for
the classification
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Linear classifiers

Pitfalls
No robust estimation procedure exist for 100 samples in 105

dimensions!
It is necessary to reduce the complexity of the problem with prior
knowledge.
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Example : Norm Constraints

The approach
A common method in statistics to learn with few samples in high
dimension is to constrain the norm of β, e.g.:

Euclidean norm (support vector machines, ridge regression):
‖β ‖2 =

∑p
i=1 β2

i

L1-norm (lasso regression) : ‖β ‖1 =
∑p

i=1 |βi |

Pros
Good performance in
classification

Cons
Limited interpretation
(small weights)
No prior biological
knowledge
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Example 2: Feature Selection

The approach
Constrain most weights to be 0, i.e., select a few genes (< 20) whose
expression are enough for classification. Interpretation is then about
the selected genes.

Pros
Good performance in
classification
Useful for biomarker
selection
Apparently easy
interpretation

Cons
The gene selection
process is usually not
robust
Wrong interpretation is
the rule (too much
correlation between
genes)
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Pathway interpretation

Motivation
Basic biological functions are usually expressed in terms of
pathways and not of single genes (metabolic, signaling,
regulatory)
Many pathways are already known
How to use this prior knowledge to constrain the weights to have
an interpretation at the level of pathways?

Solution (Rapaport et al., 2006)
Constrain the diffusion RKHS norm of β

Relevant if the true decision function is indeed smooth w.r.t. the
biological network
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Pathway interpretation

 

N

-

Glycan 
biosynthesis

   

Protein 
kinases

DNA  
and 
RNA 
polymerase 
subunits

Glycolysis / 
Gluconeogenesis 

Sulfur
metabolism

Porphyrin
and 
chlorophyll 
metabolism

Riboflavin metabolism

Folate
biosynthesis

Biosynthesis of steroids, 
ergosterol metabolism

 

Lysine
biosynthesis

Phenylalanine, tyrosine and
tryptophan biosynthesis Purine

metabolism

Oxidative 
phosphorylation, 
TCA cycle

Nitrogen,
asparagine
metabolism

Bad example
The graph is the
complete known
metabolic network of the
budding yeast (from
KEGG database)
We project the classifier
weight learned by a
SVM
Good classification
accuracy, but no
possible interpretation!
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Pathway interpretation

Good example
The graph is the
complete known
metabolic network of the
budding yeast (from
KEGG database)
We project the classifier
weight learned by a
spectral SVM
Good classification
accuracy, and good
interpretation!

Jean-Philippe Vert (ParisTech) Kernel Methods in Bioinformatics 139 / 141



Conclusion
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Conclusion

Bioinformatics relies increasingly on machine learning
Many things beyond this short tutorial (e.g., heterogeneous data
integration by multiple kernel learning, graph inference, ...)
The methods presented in this tutorial can be applied beyond
bioinformatics
Kernel methods are certainly not the end of the story, in particular
more semantic is required to represent and manipulate biological
systems.
THANK YOU!
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