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Ligand-Based Virtual Screening

Objective
Build models to predict biochemical properties of small molecules from
their structures.

Structures

C15H14ClN3O3

Properties
binding to a therapeutic target,
pharmacokinetics (ADME),
toxicity...
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Issues and solution

Two important steps
1 Map each molecule to a vector of fixed dimension.
2 Apply an algorithm for regression or pattern recognition.

Example: 2D structural keys
A vector indexed by a limited set of informative stuctures
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+ NN, PLS, decision tree, ...
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Classical approaches

Difficulties
Expressivity of the features (which features are relevant?)
Dimension of the vector (memory storage, speed, statistical
issues)

Our approach
Work implicitly in large (potentially infinite!) dimensions:

Allows to consider a large number of potentially important
features.
No need to store explicitly the vectors (no problem of memory
storage or hash clashes)
Use of regularized statistical algorithm to handle the problem of
large dimension
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The Machine Learning Paradigm

Objective
Predict a property y for objects x

x = molecule, gene sequence, picture, ...
y is continuous (regression) or discrete (pattern recognition)

A two-step approach
1 Training: observe a set

S = {(x1, y1) , . . . , (xn, yn)}

of labeled objects, and learn a function f : X → Y
2 Test: Given a new object x , predict its label by f (x).
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Examples

In biomedical research..
Virtual screening : x is the description of a molecule, y is the
activity / toxicity / drugability ...
Medical diagnosis and prognosis: x is a set of features (age,
weight, transcriptome...), y is the risk / type of tumor / expected
evolution of disease.
Functional genomics : x is a set of gene features (sequence,
expresssion...), y is the function of the gene
...
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What is a SVM?

Main features
an algorithm for pattern recognition and regression
robust in high dimension (e.g., images, texts, microarrays,
fingerprints)
handles vectorial or structured data (e.g., sequences, graphs)
allows easy integration of heterogeneous data (e.g., gene
sequence and expression, docking score and molecule
structure...)
state-of-the-art performance on many real-world applications.
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Simplest SVM
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Simplest SVM

γ

γ
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Linear SVM: implementation

After some algebra it is obtained by solving in α ∈ Rn the following
quadratic program:

minimize
n∑

i=1

n∑
j=1

αiαjx>i xj −
n∑

i=1

αi

subject to αi ≥ 0, i = 1, . . . , n ,
n∑

i=1

αiyi = 0 .

Once α is found, the classification function is the sign of :

f (x) =
n∑

i=1

αix>i x + b .
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Linear SVM: non-separable case

Implementation
Solution: find a trade-off between large margin and few
misclassification
Simple and elegant mathematical translation: replace 0 ≤ αi by
0 ≤ αi ≤ C, for some constant C > 0, in the optimization problem.
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Nonlinear SVM

The idea
Define a (nonlinear) mapping

φ : X → F ⊂ Rp .

Run a linear SVM in the feature space.
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Nonlinear SVM: implementation

Solve in α ∈ Rn:

minimize
n∑

i=1

n∑
j=1

αiαjΦ(xi)
>Φ(xj)−

n∑
i=1

αi

subject to 0 ≤ αi ≤ C, i = 1, . . . , n ,
n∑

i=1

αiyi = 0 .

Once α is found, the classification function is the sign of :

f (x) =
n∑

i=1

αiΦ(xi)
>Φ(x) + b
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The kernel tricks

Important idea!
To any mapping Φ : X → F corresponds a kernel function K :

K (x , x ′) = Φ(x)>Φ(x ′) .

SVM only need K , rather than Φ:

minimize
n∑

i=1

n∑
j=1

αiαjK (xi , xj)−
n∑

i=1

αi

subject to 0 ≤ αi ≤ C, i = 1, . . . , n ,
n∑

i=1

αiyi = 0 .
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Example: polynomial kernel

2R

x1

x2

x1

x2

2

For x = (x1, x2)
> ∈ R2, let Φ(x) = (x2

1 ,
√

2x1x2, x2
2 ) ∈ R3:

K (x , x ′) = x2
1 x ′21 + 2x1x2x ′1x ′2 + x2

2 x ′22

=
(
x1x ′1 + x2x ′2

)2

=
(

x>x ′
)2

.
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Kernel examples

For vectors
The linear kernel

Klin
(
x, x′

)
= x>x′ .

The polynomial kernel

Kpoly
(
x, x′

)
=

(
x>x′ + a

)d
.

The Gaussian RBF kernel:

KGaussian
(
x, x′

)
= exp

(
−‖x− x′ ‖2

2σ2

)
.
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Working with kernels

Main features
1 There exist conditions to ensure that a function K (x , x ′) is a valid

kernel (symmetry, positive definiteness).
2 No need to compute the corresponding Φ.
3 A kernel K can be thought of as a measure of similarity (inner

products) between the data points.
4 The kernel trick allows to work implicitly in a (possibly

large-dimensional) feature space, in particular:
to obtain non-linear versions of linear methods (nonlinear kernels)
to extend these methods to non-vector data (kernels for general
objects)

5 SVM are designed not to overfit the training data even in infinite
dimension.

6 Kernel engineering for complex objects is a hot topic!
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Kernel and kernel methods summary

Performance
State-of-the-art in many real-world applications
Resistant to large dimensions

Data representation
Data do not need to be explicitly vectors
A similarity function K (x , x ′) between data is enough
K must be symmetric and positive definite

Kernels in chemoinformatics
We need kernels for molecules!
Inner products of classical vector / fingerprint representations will
work, but we can do better.
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Motivation: 2D Fingerprints

Features
A vector indexed by a large set of molecular fragments

. . . . . .C N
CC
ON

C C NO C

CO C

CC C
CN C

NO CC C C

CC CC C C

CN CC C C

N

O

O

O N

O

C
. . . . . . . . .

Pros
Many features
Easy to detect

Cons
Too many features?
Hashing =⇒ clashes
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SVM approach

. . . . . .C N
CC
ON

C C NO C

CO C

CC C
CN C

NO CC C C

CC CC C C

CN CC C C

N

O

O

O N

O

C
. . . . . . . . .

Let Φ(x) the vector of fragment counts:
Long fragments lead to large dimensions :

SVM can learn in high dimension
Φ(x) is too long to be stored, and hashes induce clashes:

SVM do not need Φ(x), they just need the kernel

K (x , x ′) = φ(x)>φ(x ′) .

Jean-Philippe Vert (Mines de Paris) QSAR and Virtual Screening with SVM 22 / 42



2D fingerprint kernel

Definition
For any d > 0 let φd(x) be the vector of counts of all fragments of
length d :

φ1(x) = ( #(C),#(O),#(N), ...)>

φ2(x) = ( #(C-C),#(C=O),#(C-N), ...)> etc...

The 2D fingerprint kernel is defined, for λ < 1, by

K2D(x , x ′) =
∞∑

d=1

λdφd(x)>φd(x ′) .

This is an inner product in the space of 2D fingerprints of infinite
length.
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2D kernel computation

Theorem
The 2D fingerprint kernel between two molecules x and x ′ can be
computed with a worst-case complexity O

(
(| x | × | x ′ |)3

)
(much faster

in practice).

Remarks
The complexity is not related to the length of the fragments
considered (although faster computations are possible if the
length is limited).
Solves the problem of clashes and memory storage.
Allows to work with infinite-length fingerprints without computing
them!
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2D kernel computation: Sketch (1/2)

Let F(x) be the set of fragments of the molecule x (with repeats).
Let l(f ) be the label of fragment f (e.g., c − c), and | f | its length.
Then the kernel can be rewritten:

K2D(x , x ′) =
∑

f∈F(x)

∑
f∈F(x)

1
(
l(f) = l(f′)

)
λ| f | .

For any two molecules (graphs) G1 and G2, compute the product
graph G = G1 ×G2:

1’

2’

2,1’

1,2’

3,2’

1

2
3

X =

There is a bijection between:
each fragments of G,
each pair of fragments in G1 and G2 with same label.
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2D kernel computation: Sketch (2/2)

Therefore the kernel can be rewritten:

K2D(x , x ′) =
∑

f∈F(G)

λ| f | .

Let A be the adjacency matrix of G. For any d ≥ 1,
[
Ad]

i,j is the
number of fragments of length d starting in i and ending in j .
Therefore the kernel is the sum of the elements of the matrices:

λA + λ2A2 + λ3A3 + . . . = (I − λA)−1 − I .
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Extensions 1: label enrichment

Atom relabebling with the Morgan index

Order 2 indices

N

O

O

1

1

1

1

1

1

1

1

1

N

O

O

2

2

2

3

2

3

1

1

2

N

O

O

4

4

5

7

5

5

3

3

4

No Morgan Indices Order 1 indices

Compromise between fingerprints and structural keys features.
Other relabeling schemes are possible.
Faster computation with more labels (less matches implies a
smaller product graph).
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Extensions 2: filter out tottering fragments

Tottering fragments

CC

C 0

C

C CC

O

Solution: graph transform
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Extensions 3: tree-like fragments

N

N

C

CO

C

C

ON

C

N

N CN C C

:   1  x    w(t)

:   1  x    w(t)

:   1  x    w(t)

N

C

N O

C

.

.

.

.

.

.

.

.

.

.

.

.

t  = 

t  = 

t  = 
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Experiments

MUTAG dataset
aromatic/hetero-aromatic compounds
high mutagenic activity /no mutagenic activity
188 compouunds: 125 + / 63 -

Results
10-fold cross-validation accuracy

Method Accuracy
Progol1 81.4%
2D kernel 91.2%
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Space of pharmacophore

3-points pharmacophores

O

O

2

d1

d3

d

O

O

2

d1

d3

d

A set of 3 atoms, and 3 inter-atom distances:

T = {((x1, x2, x3) , (d1, d2, d3)) , xi ∈ {atom types}; di ∈ R}
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3D fingerprint kernel

Pharmacophore fingerprint
1 Discretize the space of pharmacophores T (e.g., 6 atoms or

groups of atoms, 6-7 distance bins) into a finite set Td

2 Count the number of occurrences φt(x) of each pharmacophore
bin t in a given molecule x , to form a pharmacophore fingerprint.

3D kernel
A simple 3D kernel is the inner product of pharmacophore fingerprints:

K (x , x ′) =
∑
t∈Td

φt(x)φt(x ′) .
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Discretization of the pharmacophore space

Common issues
1 If the bins are too large, then they are not specific enough
2 If the bins are too large, then they are too specific

In all cases, the arbitrary position of boundaries between bins affects
the comparison:

x1 x3

x2

→ d(x1, x3) < d(x1, x2)
BUT bin(x1) = bin(x2) 6= bin(x3)

Jean-Philippe Vert (Mines de Paris) QSAR and Virtual Screening with SVM 34 / 42



Kernels between pharmacophores

A small trick

K (x , y) =
∑
t∈Td

φt(x)φt(y)

=
∑
t∈Td

(
X

px∈P(x)

1(bin(px) = t))(
X

py∈P(y)

1(bin(py) = t))

=
∑

px∈P(x)

∑
py∈P(y)

1(bin(px) = bin(py))

General pharmacophore kernel

K (x , y) =
∑

px∈P(x)

∑
py∈P(y)

KP(px , py )
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New pharmacophore kernels

Discretizing the pharmacophore space is equivalent to taking the
following kernel between individual pharmacophores:

KP(p1, p2) = 1 (bin(px) = bin(py))

For general kernels, there is no need for discretization!
For example, is d(p1, p2) is a Euclidean distance between
pharmacophores, take:

KP (p1, p2) = exp (−γd (p1, p2)) .
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Experiments

4 public datasets
BZR: ligands for the benzodiazepine receptor
COX: cyclooxygenase-2 inhibitors
DHFR: dihydrofolate reductase inhibitors
ER: estrogen receptor ligands

TRAIN TEST
Pos Neg Pos Neg

BZR 94 87 63 62
COX 87 91 61 64
DHFR 84 149 42 118
ER 110 156 70 110
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Experiments

Results (accuracy)
Kernel BZR COX DHFR ER
2D (Tanimoto) 71.2 63.0 76.9 77.1
3D fingerprint 75.4 67.0 76.9 78.6
3D not discretized 76.4 69.8 81.9 79.8

Jean-Philippe Vert (Mines de Paris) QSAR and Virtual Screening with SVM 38 / 42



Outline

1 Support Vector Machines and kernels

2 2D Kernel

3 3D Pharmacophore Kernel

4 Conclusion

Jean-Philippe Vert (Mines de Paris) QSAR and Virtual Screening with SVM 39 / 42



Summary

SVM is a powerful and flexible machine learning algorithm. The
kernel trick allows the manipulation of non-vectorial objects at the
cost of defining a kernel function.
The 2D kernel for molecule extends classical fingerprint-based
approches. It solves the problem of bit clashes, allows infinite
fingerprints and various extensions.
The 3D kernel for molecule extends classical pharmacophore
fingerprint-based approaches. It solves the problems of bit
clashes and of discretization.
Both kernels improve upon their classical counterparts, and
provide competitive results on benchmark datasets.
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