Metric learning pairwise kernel for graph inference with SVM

Jean-Philippe Vert ${ }^{1}$ Jian Qiu ${ }^{2}$ William Stafford Noble ${ }^{3}$
${ }^{1}$ Center for Computational Biology Ecole des Mines de Paris
${ }^{2}$ Department of Genome Sciences University of Washington
${ }^{2}$ Department of Genome Sciences
Department of Computer Science and Engineering University of Washington

NIPS workshop "Open problems in compuational biology", Whistler, Canada, December 8th, 2006

Motivation

Data

- Gene expression,
- Gene sequence,
- Protein localization, ...

Graph

- Protein-protein interactions,
- Metabolic pathways,
- Signaling pathways, ...

Strategies

Unsupervised approaches

The graph is completely unknown

- model-based approaches : Bayes nets, dynamical systems,..
- similarity-based : connect similar nodes

Supervised approaches
 Part of the graph is known
 - Undirect approach (ML): a pair (a, b) is likely to be connected if it is similar to a pair (c, d) which is connected.
 - Direct approach: a is likely to be connected to b if they are similar to each other, for a measure of similarity to be optimized

Strategies

Unsupervised approaches

The graph is completely unknown

- model-based approaches : Bayes nets, dynamical systems,..
- similarity-based : connect similar nodes

Supervised approaches

Part of the graph is known

- Undirect approach (ML): a pair (a, b) is likely to be connected if it is similar to a pair (c, d) which is connected.
- Direct approach: a is likely to be connected to b if they are similar to each other, for a measure of similarity to be optimized

Example: supervised undirect approach with SVM

TPPK kernel

- Suppose a kernel K exists for individual genes.
- Construct a tensor product pairwise kernel (TPPK) between pairs (Ben-Hur and Noble, 2005):
$K_{\text {TTPK }}\left(\left(x_{1}, x_{2}\right),\left(x_{3}, x_{4}\right)\right)=K\left(x_{1}, x_{3}\right) K\left(x_{2}, x_{4}\right)+K\left(x_{1}, x_{4}\right) K\left(x_{2}, x_{3}\right)$.
- Given a training set of connected and non-connected pairs, train a binary SVM to predict if a new pair is connected or not.

Example: supervised direct approach

Metric learning

- Suppose a kernel K exists for individual genes.
- Given a training set of connected and non-connected pairs, find a new distance metric such that connected genes are closer to each other than non-connected pairs.
- For a new pair, predict an edge is the distance is below a threshold (Vert and Yamanishi, 2005).

Contribution

- A new distance metric learning algorithm for supervised graph inference
- A relaxation equivalent to a SVM with a particular kernel for pairs, which we call metric learning pairwise kernel (MLPK).
- Therefore the possibility to:
- use out-of-the-box SVM implementation for supervised direct graph inference
- easily combine direct and undirect approaches by kernel combination.

Metric learning for graph inference

Objective function

- Suppose genes are described as vectors $x \in \mathbb{R}^{d}$
- After a linear mapping $\Phi(x)=A x$ the square Euclidean distance is:

$$
\begin{aligned}
d_{M}\left(x, x^{\prime}\right) & =\left(x-x^{\prime}\right)^{\top} M\left(x-x^{\prime}\right) \\
& =\operatorname{tr}\left(M\left(x-x^{\prime}\right)\left(x-x^{\prime}\right)^{\top}\right)
\end{aligned}
$$

with $M=A^{\top} A \succ 0$.

- Direct edge inference is possible if, for example,

$$
d_{\phi}\left(x_{i}, x_{j}\right) \begin{cases}\leq \gamma-1 & \text { for } x_{i} \sim x_{j} \\ \geq \gamma+1 & \text { for } x_{i} \nsim x_{j}\end{cases}
$$

Large-margin metric learning

Problem formulation

- In the spirit of SVM, this suggests the following optimization problem:

$$
\begin{array}{cl}
\text { Minimize } & \|M\|_{\text {Fro }}^{2}+C \sum_{(i, j)} \zeta_{i, j} \\
\text { subject to } & \zeta_{i, j} \geq 0, \quad \forall(i, j) \in \mathcal{T} \\
& d_{M}\left(x_{i}, x_{j}\right) \leq \gamma-1+\zeta_{i, j}, \quad i \sim j \\
& d_{M}\left(x_{i}, x_{j}\right) \geq \gamma+1-\zeta_{i, j}, \quad i \nsim j \\
& M \succeq 0 .
\end{array}
$$

- Similar to Tsang and Kwok (2003)

Representation of the solution

Lemma

The solution \hat{M} of the previous problem can be expanded as:

$$
\hat{M}=\sum_{(i, j) \in \mathcal{T}} \alpha_{i, j}\left(x_{i}-x_{j}\right)\left(x_{i}-x_{j}\right)^{\top},
$$

where $\alpha_{i, j}$ are real number associated to the training pairs $(i, j) \in \mathcal{T}$.

Remarks

- The "classical" representer theorem can not be applied here because of the $M \succeq 0$ constraint. A slight extension is required
- Plugging back into the problem leads to a SDP problem
- The dimension of the SDP is $2|\mathcal{T}|+1 \Longrightarrow$ computational issues.

Representation of the solution

Lemma

The solution \hat{M} of the previous problem can be expanded as:

$$
\hat{M}=\sum_{(i, j) \in \mathcal{T}} \alpha_{i, j}\left(x_{i}-x_{j}\right)\left(x_{i}-x_{j}\right)^{\top},
$$

where $\alpha_{i, j}$ are real number associated to the training pairs $(i, j) \in \mathcal{T}$.

Remarks

- The "classical" representer theorem can not be applied here because of the $M \succeq 0$ constraint. A slight extension is required.
- Plugging back into the problem leads to a SDP problem
- The dimension of the SDP is $2|\mathcal{T}|+1 \Longrightarrow$ computational issues.

Relaxation

- Relax the constraint $M \succeq 0$
- The problem becomes:

$$
\begin{aligned}
\text { Minimize } & \|M\|_{\text {Fro }}^{2}+C \sum_{(i, j)} \zeta_{i, j} \\
\text { subject to } & \zeta_{i, j} \geq 0, \quad \forall(i, j) \\
& <M, D_{i, j}>_{\text {Fro }}-\gamma \leq-1+\zeta_{i, j}, \quad i \sim j \\
& <M, D_{i, j}>_{\text {Fro }}-\gamma \geq 1-\zeta_{i, j}, \quad i \nsim j .
\end{aligned}
$$

with the notation

$$
D_{i, j}=\left(x_{i}-x_{j}\right)\left(x_{i}-x_{j}\right)^{\top}
$$

- This is a SVM over $d \times d$ matrices with training set $\left(D_{i, j}\right)_{(i, j) \in \mathcal{T}}$

Relaxation

- Relax the constraint $M \succeq 0$
- The problem becomes:

$$
\begin{array}{cl}
\text { Minimize } & \|M\|_{\text {Fro }}^{2}+C \sum_{(i, j)} \zeta_{i, j} \\
\text { subject to } & \zeta_{i, j} \geq 0, \quad \forall(i, j) \\
& <M, D_{i, j}>_{\text {Fro }}-\gamma \leq-1+\zeta_{i, j}, \quad i \sim j \\
& <M, D_{i, j}>_{\text {Fro }}-\gamma \geq 1-\zeta_{i, j}, \quad i \nsim j .
\end{array}
$$

with the notation

$$
D_{i, j}=\left(x_{i}-x_{j}\right)\left(x_{i}-x_{j}\right)^{\top}
$$

Relaxation

- Relax the constraint $M \succeq 0$
- The problem becomes:

$$
\begin{array}{cl}
\text { Minimize } & \|M\|_{\text {Fro }}^{2}+C \sum_{(i, j)} \zeta_{i, j} \\
\text { subject to } & \zeta_{i, j} \geq 0, \quad \forall(i, j) \\
& <M, D_{i, j}>_{\text {Fro }}-\gamma \leq-1+\zeta_{i, j}, \quad i \sim j \\
& <M, D_{i, j}>_{\text {Fro }}-\gamma \geq 1-\zeta_{i, j}, \quad i \nsim j .
\end{array}
$$

with the notation

$$
D_{i, j}=\left(x_{i}-x_{j}\right)\left(x_{i}-x_{j}\right)^{\top}
$$

- This is a SVM over $d \times d$ matrices with training set $\left(D_{i, j}\right)_{(i, j) \in \mathcal{T}}$

Metric learning pairwise kernel

Pairwise inner product

$$
\begin{aligned}
\left\langle D_{x_{1}, x_{2}}, D_{x_{3}, x_{4}}\right\rangle_{\text {Fro }} & =\operatorname{Trace}\left(\left(x_{1}-x_{2}\right)\left(x_{1}-x_{2}\right)^{\top}\left(x_{3}-x_{4}\right)\left(x_{3}-x_{4}\right)^{\top}\right) \\
& =\left(\left(x_{1}-x_{2}\right)^{\top}\left(x_{3}-x_{4}\right)\right)^{2} \\
& =\left(x_{1}^{\top} x_{3}-x_{1}^{\top} x_{4}-x_{2}^{\top} x_{3}+x_{2}^{\top} x_{4}\right)^{2} .
\end{aligned}
$$

Pairwise kernel

$$
\begin{aligned}
& K_{M L P K}\left(\left(x_{1}, x_{2}\right),\left(x_{3}, x_{4}\right)\right) \\
& \quad=\left(K\left(x_{1}, x_{3}\right)-K\left(x_{1}, x_{4}\right)-K\left(x_{2}, x_{3}\right)+K\left(x_{2}, x_{4}\right)\right)^{2}
\end{aligned}
$$

Results

Metabolic network

- 769 vertices: enzymes
- 3702 edges : catalyze successive reactions
- 3702 negative pairs (randomly sampled)
- 5 -fold CV, 3 repeats, parameter optimization over the training set

	MLPK		TPPK	
Data	Accuracy	AUC	Accuracy	AUC
Expression	77.8 ± 0.2	84.5 ± 0.1	76.7 ± 0.3	83.3 ± 0.2
Localization	63.9 ± 0.4	68.2 ± 0.4	62.3 ± 0.1	65.8 ± 0.4
Phylogenetic profile	79.8 ± 0.1	84.9 ± 0.2	78.4 ± 0.1	83.4 ± 0.4
Yeast two-hybrid	76.6 ± 0.2	82.0 ± 0.1	59.2 ± 0.1	65.1 ± 0.6
Sum	83.9 ± 0.4	90.9 ± 0.3	84.2 ± 0.5	91.1 ± 0.3

Results

Co-complex network

- 797 vertices: proteins
- 3280 edges : member of the same complex
- 3280 negative pairs (randomly sampled)
- 5 -fold CV, 3 repeats, parameter optimization over the training set

	MLPK		TPPK	
Data	Accuracy	AUC	Accuracy	AUC
Localization	76.5 ± 0.1	76.8 ± 0.1	79.6 ± 0.1	83.1 ± 0.1
Chip-chip	82.4 ± 0.3	89.7 ± 0.1	63.8 ± 0.1	67.9 ± 0.3
Pfam	92.2 ± 0.2	98.2 ± 0.1	85.5 ± 0.1	91.7 ± 0.2
PSI-BLAST	90.0 ± 0.3	97.3 ± 0.1	88.3 ± 0.1	93.6 ± 0.2

Conclusion and future work

Summary

- A kernel method for distance metric learning, with an objective function optimized for graph inference
- A relaxation that leads to a SVM with a particular kernel for pairs
- Encouraging experimental results

Future work

- Assess the effect of relaxation
- Integration of multiple pairwise kernels

Reference

J.-P. Vert, J. Qiu and W. S. Noble, Metric learning pairwise kernel for graph inference, preprint arXiv q-bio.QM/0610040, 2006.

