Metric learning pairwise kernel for graph inference with SVM

Jean-Philippe Vert¹ Jian Qiu² William Stafford Noble³

¹Center for Computational Biology Ecole des Mines de Paris

²Department of Genome Sciences University of Washington

²Department of Genome Sciences Department of Computer Science and Engineering University of Washington

NIPS workshop "Open problems in computional biology", Whistler, Canada, December 8th, 2006

Motivation

Data

- Gene expression,
- Gene sequence,
- Protein localization, ...

Graph

- Protein-protein interactions,
- Metabolic pathways,
- Signaling pathways, ...

Unsupervised approaches

The graph is completely unknown

- model-based approaches : Bayes nets, dynamical systems,...
- similarity-based : connect similar nodes

Supervised approaches

Part of the graph is known

- Undirect approach (ML): a pair (a, b) is likely to be connected if it is similar to a pair (c, d) which is connected.
- Direct approach: *a* is likely to be connected to *b* if they are similar to each other, for a measure of similarity to be optimized

Unsupervised approaches

The graph is completely unknown

- model-based approaches : Bayes nets, dynamical systems,...
- similarity-based : connect similar nodes

Supervised approaches

Part of the graph is known

- Undirect approach (ML): a pair (*a*, *b*) is likely to be connected if it is similar to a pair (*c*, *d*) which is connected.
- Direct approach: *a* is likely to be connected to *b* if they are similar to each other, for a measure of similarity to be optimized

TPPK kernel

- Suppose a kernel *K* exists for individual genes.
- Construct a tensor product pairwise kernel (TPPK) between pairs (Ben-Hur and Noble, 2005):

 $K_{TTPK}((x_1, x_2), (x_3, x_4)) = K(x_1, x_3)K(x_2, x_4) + K(x_1, x_4)K(x_2, x_3).$

 Given a training set of connected and non-connected pairs, train a binary SVM to predict if a new pair is connected or not.

Metric learning

- Suppose a kernel K exists for individual genes.
- Given a training set of connected and non-connected pairs, find a new distance metric such that connected genes are closer to each other than non-connected pairs.
- For a new pair, predict an edge is the distance is below a threshold (Vert and Yamanishi, 2005).

- A new distance metric learning algorithm for supervised graph inference
- A relaxation equivalent to a SVM with a particular kernel for pairs, which we call metric learning pairwise kernel (MLPK).
- Therefore the possibility to:
 - use out-of-the-box SVM implementation for supervised direct graph inference
 - easily combine direct and undirect approaches by kernel combination.

Metric learning for graph inference

Objective function

- Suppose genes are described as vectors $x \in \mathbb{R}^d$
- After a linear mapping Φ(x) = Ax the square Euclidean distance is:

$$d_M(x,x') = (x-x')^\top M(x-x')$$

= $tr\left(M(x-x')(x-x')^\top\right)$,

with $M = A^{\top}A \succ 0$.

• Direct edge inference is possible if, for example,

$$d_{\phi}(x_i, x_j) egin{cases} \leq \gamma - 1 & ext{ for } x_i \sim x_j \; , \ \geq \gamma + 1 & ext{ for } x_i
eq x_j \; . \end{cases}$$

Large-margin metric learning

Problem formulation

 In the spirit of SVM, this suggests the following optimization problem:

 $\begin{array}{ll} \text{Minimize} & \parallel M \parallel^2_{Fro} + C \sum_{(i,j)} \zeta_{i,j} \\ \text{subject to} & \zeta_{i,j} \ge 0 \ , \quad \forall (i,j) \in \mathcal{T} \\ & d_M(x_i,x_j) \le \gamma - 1 + \zeta_{i,j} \ , \quad i \sim j \\ & d_M(x_i,x_j) \ge \gamma + 1 - \zeta_{i,j} \ , \quad i \not\sim j \\ & M \succeq 0 \ . \end{array}$

Similar to Tsang and Kwok (2003)

Lemma

The solution \hat{M} of the previous problem can be expanded as:

$$\hat{M} = \sum_{(i,j)\in\mathcal{T}} \alpha_{i,j} \left(\mathbf{x}_i - \mathbf{x}_j \right) \left(\mathbf{x}_i - \mathbf{x}_j \right)^\top \,,$$

where $\alpha_{i,j}$ are real number associated to the training pairs $(i,j) \in \mathcal{T}$.

Remarks

- The "classical" representer theorem can not be applied here because of the M ≥ 0 constraint. A slight extension is required.
- Plugging back into the problem leads to a SDP problem
- The dimension of the SDP is $2 |T| + 1 \implies$ computational issues.

Lemma

The solution \hat{M} of the previous problem can be expanded as:

$$\hat{M} = \sum_{(i,j)\in\mathcal{T}} \alpha_{i,j} \left(\mathbf{x}_i - \mathbf{x}_j \right) \left(\mathbf{x}_i - \mathbf{x}_j \right)^\top ,$$

where $\alpha_{i,j}$ are real number associated to the training pairs $(i,j) \in \mathcal{T}$.

Remarks

- The "classical" representer theorem can not be applied here because of the M ≥ 0 constraint. A slight extension is required.
- Plugging back into the problem leads to a SDP problem
- The dimension of the SDP is $2 |\mathcal{T}| + 1 \implies$ computational issues.

Relaxation

• Relax the constraint $M \succeq 0$

• The problem becomes:

$$\begin{array}{ll} \text{Minimize} & \| M \|_{Fro}^2 + C \sum_{(i,j)} \zeta_{i,j} \\ \text{subject to} & \zeta_{i,j} \geq 0 \ , \quad \forall (i,j) \\ & < M, D_{i,j} >_{Fro} -\gamma \leq -1 + \zeta_{i,j} \ , \quad i \sim j \\ & < M, D_{i,j} >_{Fro} -\gamma \geq 1 - \zeta_{i,j} \ , \quad i \not\sim j \ . \end{array}$$

with the notation

$$D_{i,j} = \left(x_i - x_j
ight) \left(x_i - x_j
ight)^ op$$
.

• This is a SVM over $d \times d$ matrices with training set $(D_{i,j})_{(i,j) \in T}$

Relaxation

• Relax the constraint $M \succeq 0$

• The problem becomes:

$$\begin{array}{ll} \text{Minimize} & \| M \|_{Fro}^2 + C \sum_{(i,j)} \zeta_{i,j} \\ \text{subject to} & \zeta_{i,j} \geq 0 \ , \quad \forall (i,j) \\ & < M, D_{i,j} >_{Fro} -\gamma \leq -1 + \zeta_{i,j} \ , \quad i \sim j \\ & < M, D_{i,j} >_{Fro} -\gamma \geq 1 - \zeta_{i,j} \ , \quad i \not \sim j \ . \end{array}$$

with the notation

$$D_{i,j} = (\mathbf{x}_i - \mathbf{x}_j) (\mathbf{x}_i - \mathbf{x}_j)^{\top}$$
.

• This is a SVM over $d \times d$ matrices with training set $(D_{i,j})_{(i,j) \in T}$

Relaxation

• Relax the constraint $M \succeq 0$

• The problem becomes:

$$\begin{array}{ll} \text{Minimize} & \| M \|_{Fro}^2 + C \sum_{(i,j)} \zeta_{i,j} \\ \text{subject to} & \zeta_{i,j} \geq 0 \ , \quad \forall (i,j) \\ & < M, D_{i,j} >_{Fro} -\gamma \leq -1 + \zeta_{i,j} \ , \quad i \sim j \\ & < M, D_{i,j} >_{Fro} -\gamma \geq 1 - \zeta_{i,j} \ , \quad i \not \sim j \ . \end{array}$$

with the notation

$$D_{i,j} = (\mathbf{x}_i - \mathbf{x}_j) (\mathbf{x}_i - \mathbf{x}_j)^{ op}$$
.

• This is a SVM over $d \times d$ matrices with training set $(D_{i,j})_{(i,j) \in T}$

Pairwise inner product

$$\langle D_{x_1, x_2}, D_{x_3, x_4} \rangle_{Fro} = Trace\left((x_1 - x_2) (x_1 - x_2)^\top (x_3 - x_4) (x_3 - x_4)^\top \right)$$

= $\left((x_1 - x_2)^\top (x_3 - x_4) \right)^2$
= $\left(x_1^\top x_3 - x_1^\top x_4 - x_2^\top x_3 + x_2^\top x_4 \right)^2 .$

Pairwise kernel

$$\begin{split} & \mathcal{K}_{MLPK}\left(\left(x_{1}, x_{2}\right), \left(x_{3}, x_{4}\right)\right) \\ & = \left(\mathcal{K}\left(x_{1}, x_{3}\right) - \mathcal{K}\left(x_{1}, x_{4}\right) - \mathcal{K}\left(x_{2}, x_{3}\right) + \mathcal{K}\left(x_{2}, x_{4}\right)\right)^{2} \,. \end{split}$$

Results

Metabolic network

- 769 vertices: enzymes
- 3702 edges : catalyze successive reactions
- 3702 negative pairs (randomly sampled)
- 5-fold CV, 3 repeats, parameter optimization over the training set

	MLPK		TPPK	
Data	Accuracy	AUC	Accuracy	AUC
Expression	$\textbf{77.8} \pm \textbf{0.2}$	84.5 ± 0.1	76.7 ± 0.3	$\textbf{83.3}\pm\textbf{0.2}$
Localization	63.9 ± 0.4	68.2 ± 0.4	$\textbf{62.3}\pm\textbf{0.1}$	65.8 ± 0.4
Phylogenetic profile	$\textbf{79.8} \pm \textbf{0.1}$	84.9 ± 0.2	$\textbf{78.4} \pm \textbf{0.1}$	83.4 ± 0.4
Yeast two-hybrid	76.6 ± 0.2	$\textbf{82.0}\pm\textbf{0.1}$	59.2 ± 0.1	65.1 ± 0.6
Sum	$\textbf{83.9}\pm\textbf{0.4}$	$\textbf{90.9} \pm \textbf{0.3}$	84.2 ± 0.5	91.1 ± 0.3

Results

Co-complex network

- 797 vertices: proteins
- 3280 edges : member of the same complex
- 3280 negative pairs (randomly sampled)
- 5-fold CV, 3 repeats, parameter optimization over the training set

	MLPK		TPPK	
Data	Accuracy	AUC	Accuracy	AUC
Localization	76.5 ± 0.1	$\textbf{76.8} \pm \textbf{0.1}$	$\textbf{79.6} \pm \textbf{0.1}$	$\textbf{83.1}\pm\textbf{0.1}$
Chip-chip	82.4 ± 0.3	89.7 ± 0.1	63.8 ± 0.1	67.9 ± 0.3
Pfam	92.2 ± 0.2	$\textbf{98.2}\pm\textbf{0.1}$	85.5 ± 0.1	91.7 ± 0.2
PSI-BLAST	90.0 ± 0.3	$\textbf{97.3}\pm\textbf{0.1}$	88.3 ± 0.1	93.6 ± 0.2

Conclusion and future work

Summary

- A kernel method for distance metric learning, with an objective function optimized for graph inference
- A relaxation that leads to a SVM with a particular kernel for pairs
- Encouraging experimental results

Future work

- Assess the effect of relaxation
- Integration of multiple pairwise kernels

Reference

J.-P. Vert, J. Qiu and W. S. Noble, Metric learning pairwise kernel for graph inference, *preprint arXiv q-bio.QM/0610040*, 2006.