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Motivation

Data
Gene expression,
Gene sequence,
Protein localization, ...

Graph
Protein-protein interactions,
Metabolic pathways,
Signaling pathways, ...

Vert, Qiu and Noble () Graph inferences with SVM 2 / 14



Strategies

Unsupervised approaches
The graph is completely unknown

model-based approaches : Bayes nets, dynamical systems,..
similarity-based : connect similar nodes

Supervised approaches
Part of the graph is known

Undirect approach (ML): a pair (a, b) is likely to be connected if it
is similar to a pair (c, d) which is connected.
Direct approach: a is likely to be connected to b if they are similar
to each other, for a measure of similarity to be optimized
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Example: supervised undirect approach with SVM

TPPK kernel
Suppose a kernel K exists for individual genes.
Construct a tensor product pairwise kernel (TPPK) between pairs
(Ben-Hur and Noble, 2005):

KTTPK ((x1, x2), (x3, x4)) = K (x1, x3)K (x2, x4) + K (x1, x4)K (x2, x3) .

Given a training set of connected and non-connected pairs, train a
binary SVM to predict if a new pair is connected or not.
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Example: supervised direct approach

Metric learning
Suppose a kernel K exists for individual genes.
Given a training set of connected and non-connected pairs, find a
new distance metric such that connected genes are closer to each
other than non-connected pairs.
For a new pair, predict an edge is the distance is below a
threshold (Vert and Yamanishi, 2005).

Vert, Qiu and Noble () Graph inferences with SVM 5 / 14



Contribution

A new distance metric learning algorithm for supervised graph
inference
A relaxation equivalent to a SVM with a particular kernel for pairs,
which we call metric learning pairwise kernel (MLPK).
Therefore the possibility to:

use out-of-the-box SVM implementation for supervised direct graph
inference
easily combine direct and undirect approaches by kernel
combination.

Vert, Qiu and Noble () Graph inferences with SVM 6 / 14



Metric learning for graph inference

Objective function

Suppose genes are described as vectors x ∈ Rd

After a linear mapping Φ(x) = Ax the square Euclidean distance
is:

dM(x , x ′) = (x − x ′)>M(x − x ′)

= tr
(

M(x − x ′)(x − x ′)>
)

,

with M = A>A � 0.
Direct edge inference is possible if, for example,

dφ(xi , xj)

{
≤ γ − 1 for xi ∼ xj ,

≥ γ + 1 for xi 6∼ xj .

Vert, Qiu and Noble () Graph inferences with SVM 7 / 14



Large-margin metric learning

Problem formulation
In the spirit of SVM, this suggests the following optimization
problem:

Minimize ‖M ‖2
Fro + C

∑
(i,j)

ζi,j

subject to ζi,j ≥ 0 , ∀(i , j) ∈ T
dM(xi , xj) ≤ γ − 1 + ζi,j , i ∼ j
dM(xi , xj) ≥ γ + 1− ζi,j , i 6∼ j
M � 0 .

Similar to Tsang and Kwok (2003)
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Representation of the solution

Lemma
The solution M̂ of the previous problem can be expanded as:

M̂ =
∑

(i,j)∈T

αi,j
(
xi − xj

) (
xi − xj

)>
,

where αi,j are real number associated to the training pairs (i , j) ∈ T .

Remarks
The “classical” representer theorem can not be applied here
because of the M � 0 constraint. A slight extension is required.
Plugging back into the problem leads to a SDP problem
The dimension of the SDP is 2 | T |+ 1 =⇒ computational issues.
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Relaxation

Relax the constraint M � 0
The problem becomes:

Minimize ‖M ‖2
Fro + C

∑
(i,j)

ζi,j

subject to ζi,j ≥ 0 , ∀(i , j)
< M, Di,j >Fro −γ ≤ −1 + ζi,j , i ∼ j
< M, Di,j >Fro −γ ≥ 1− ζi,j , i 6∼ j .

with the notation

Di,j =
(
xi − xj

) (
xi − xj

)>
.

This is a SVM over d × d matrices with training set
(
Di,j

)
(i,j)∈T
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Metric learning pairwise kernel

Pairwise inner product

〈Dx1,x2 , Dx3,x4〉Fro = Trace
(
(x1 − x2) (x1 − x2)

> (x3 − x4) (x3 − x4)
>
)

=
(
(x1 − x2)

> (x3 − x4)
)2

=
(

x>1 x3 − x>1 x4 − x>2 x3 + x>2 x4

)2
.

Pairwise kernel

KMLPK ((x1, x2) , (x3, x4))

= (K (x1, x3)− K (x1, x4)− K (x2, x3) + K (x2, x4))
2 .
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Results

Metabolic network
769 vertices: enzymes
3702 edges : catalyze successive reactions
3702 negative pairs (randomly sampled)
5-fold CV, 3 repeats, parameter optimization over the training set

MLPK TPPK
Data Accuracy AUC Accuracy AUC

Expression 77.8± 0.2 84.5± 0.1 76.7± 0.3 83.3± 0.2
Localization 63.9± 0.4 68.2± 0.4 62.3± 0.1 65.8± 0.4

Phylogenetic profile 79.8± 0.1 84.9± 0.2 78.4± 0.1 83.4± 0.4
Yeast two-hybrid 76.6± 0.2 82.0± 0.1 59.2± 0.1 65.1± 0.6

Sum 83.9± 0.4 90.9± 0.3 84.2± 0.5 91.1± 0.3
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Results

Co-complex network
797 vertices: proteins
3280 edges : member of the same complex
3280 negative pairs (randomly sampled)
5-fold CV, 3 repeats, parameter optimization over the training set

MLPK TPPK
Data Accuracy AUC Accuracy AUC

Localization 76.5± 0.1 76.8± 0.1 79.6± 0.1 83.1± 0.1
Chip-chip 82.4± 0.3 89.7± 0.1 63.8± 0.1 67.9± 0.3

Pfam 92.2± 0.2 98.2± 0.1 85.5± 0.1 91.7± 0.2
PSI-BLAST 90.0± 0.3 97.3± 0.1 88.3± 0.1 93.6± 0.2
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Conclusion and future work

Summary
A kernel method for distance metric learning, with an objective
function optimized for graph inference
A relaxation that leads to a SVM with a particular kernel for pairs
Encouraging experimental results

Future work
Assess the effect of relaxation
Integration of multiple pairwise kernels
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